• Title/Summary/Keyword: Coronavirus disease

Search Result 814, Processing Time 0.023 seconds

A Comprehensive Study of SARS-CoV-2: From 2019-nCoV to COVID-19 Outbreak

  • Waris, Abdul;Ali, Muhammad;Khan, Atta Ullah;Ali, Asmat;Baset, Abdul
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.252-266
    • /
    • 2020
  • The coronavirus disease 2019 (COVID-19) is a highly contagious pneumonia that has spread throughout the world. It is caused by a novel, single stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genetic analysis revealed that, phylogenetically, the SARS-CoV-2 is related to severe acute respiratory syndrome-like viruses seen in bats. Because of this, bats are considered as a possible primary reservoir. The World Health Organization has declared the COVID-19 outbreak as a pandemic. As of May 27, 2020, more than 5,406,282 confirmed cases, and 343,562 confirmed deaths have been reported worldwide. Currently, there are no approved vaccines or antiviral drugs available against COVID-19. Newly developed vaccines are in the first stage of clinical trials, and it may take a few months to a few years for their commercialization. At present, remdesivir and chloroquine are the promising drugs for treating COVID-19 patients. In this review, we summarize the diversity, genetic variations, primary reservoirs, epidemiology, clinical manifestations, pathogenesis, diagnosis, treatment strategies, and future prospects with respect to controlling the spread of COVID-19.

Diagnosis and seroprevalence of porcine respiratory coronavirus disease (돼지호흡기코로나바이러스 감염증의 감별진단과 항체분포 조사)

  • Kim, Eun-Gyeong;Son, Byeong-Kuk;Lee, Jong-Min;Kim, Tho-Kyoung
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • Porcine respiratory coronavirus (PRCV) is antigenically related to transmissible gastroenteritis virus (TGEV). Differential serological diagnosis between PRCV and TGEV infection is not possible with the classical sero-neutralization test. Infection with PRCV or TGEV induces antibodies which neutralize both viruses to the same titer. However, the enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) can differentiate between PRCV and TGEV infection. This study was carried out to investigate the prevalence of PRCV infection of swine in Gyeongnam province. A total of 391 serum samples from 37 herds in Gyeongnam were examined for antibody to PRCV using blocking ELISA. All serum samples were collected from 130- to 150-day-old pigs between August and December 2006. By ELISA, 182 out of 391 sera tested (46.5%) and 29 out of 37 sample herds (78.4%) were positive against PRCV. Our data suggested that seropositive herds for PRCV are distributed diffusely throughout Gyeongnam. The PCR methods were established to diagnose PRCV spike protein (S) gene. PCR were conducted to identify the PRCV genome against 150 pigs in PRCV antibody positive herds.

A Review of Recent Trend of COVID-19 Infection and Correlation with Pulmonary Function

  • Kim, Min Woo
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.127-135
    • /
    • 2020
  • Coronavirus is generally known to cause minor respiratory diseases in animals and humans. However, some coronavirus genus is reported to cause animal-to-human interspecies infection. Since the end of 2019, a new type of coronavirus (COVID-19) infection is spreading rapidly throughout the world, leading to the declaration of the pandemic by the World Health Organization (WHO). Despite various clinical studies to counter COVID-19 infection, the total confirmed cases and death rates are still accumulating. To break down this new threat, we should pay attention to newly revealed information based on scientific facts. In this review, we introduced the clinical characteristics, diagnostic methods, and treatment of patients infected with COVID-19. Moreover, we highlighted the correlation between COVID-19 severity and patients with underlying diseases. Potential risks associated with COVID-19 can be differed depending on the condition of patients and can cause pulmonary complications. Therefore, lung capacity exams are expected to help predict the progression of the disease along with previously established detection methods such as molecular diagnostics and immunoassay. Although physiological research hasn't yet been emphasized to evaluate COVID-19 infection, this review is expected to be valuable to give new inspiration to deal with COVID-19 which might strike again in the future.

The impact of COVID-19 on human reproduction and directions for fertility treatment during the pandemic

  • Lee, Dayong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.273-282
    • /
    • 2021
  • Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly, resulting in a pandemic. The virus enters host cells through angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2). These enzymes are widely expressed in reproductive organs; hence, coronavirus disease 2019 (COVID-19) could also impact human reproduction. Current evidence suggests that sperm cells may provide an inadequate environment for the virus to penetrate and spread. Oocytes within antral follicles are surrounded by cumulus cells, which rarely express ACE2 and TMPRSS2. Thus, the possibility of transmission of the virus through sexual intercourse and assisted reproductive techniques seems unlikely. Early human embryos express coronavirus entry receptors and proteases, implying that human embryos are potentially vulnerable to SARS-CoV-2 in the early stages of development. Data on the expression of ACE2 and TMPRSS2 in the human endometrium are sparse. Moreover, it remains unclear whether SARS-CoV-2 directly affects the embryo and its implantation. A study of the effect of SARS-CoV-2 on pregnancy showed an increase in preterm delivery. Thus, vertical transmission of the virus from mother to fetus in the third trimester is possible, and further data on human reproduction are required to establish this possibility. Based on analyses of existing data, major organizations in this field have published guidelines on the treatment of infertility. Regarding these guidelines, despite the COVID-19 pandemic, reproductive treatment is crucial for the well-being of society and must be continued under suitable regulations and good standard laboratory practice protocols.

Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation

  • Young-Jin Youn;Yu-Bin Lee;Sun-Hwa Kim;Hee Kyung Jin;Jae-sung Bae;Chang-Won Hong
    • IMMUNE NETWORK
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.8
    • /
    • 2021
  • Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated. Here we show that 2 viral proteins encoded by SARS-CoV-2, the nucleocapsid protein and the whole spike protein, induce NET formation from neutrophils. NET formation was ROSindependent and was completely inhibited by the spleen tyrosine kinase inhibition. The inhibition of p38 MAPK, protein kinase C, and JNK signaling pathways also inhibited viral protein-induced NET formation. Our findings demonstrate one method by which SARSCoV-2 evades innate immunity and provide a potential target for therapeutics to treat patients with severe COVID-19.

SARS-CoV-2 Infection of Airway Epithelial Cells

  • Gwanghui Ryu;Hyun-Woo Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.16
    • /
    • 2021
  • Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide since its outbreak in December 2019, and World Health Organization declared it as a pandemic on March 11, 2020. SARS-CoV-2 is highly contagious and is transmitted through airway epithelial cells as the first gateway. SARS-CoV-2 is detected by nasopharyngeal or oropharyngeal swab samples, and the viral load is significantly high in the upper respiratory tract. The host cellular receptors in airway epithelial cells, including angiotensin-converting enzyme 2 and transmembrane serine protease 2, have been identified by single-cell RNA sequencing or immunostaining. The expression levels of these molecules vary by type, function, and location of airway epithelial cells, such as ciliated cells, secretory cells, olfactory epithelial cells, and alveolar epithelial cells, as well as differ from host to host depending on age, sex, or comorbid diseases. Infected airway epithelial cells by SARS-CoV-2 in ex vivo experiments produce chemokines and cytokines to recruit inflammatory cells to target organs. Same as other viral infections, IFN signaling is a critical pathway for host defense. Various studies are underway to confirm the pathophysiological mechanisms of SARS-CoV-2 infection. Herein, we review cellular entry, host-viral interactions, immune responses to SARS-CoV-2 in airway epithelial cells. We also discuss therapeutic options related to epithelial immune reactions to SARS-CoV-2.

Development of a Single Nucleotide Polymorphism DNA Microarray for the Detection and Genotyping of the SARS Coronavirus

  • Guo, Xi;Geng, Peng;Wang, Quan;Cao, Boyang;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1445-1454
    • /
    • 2014
  • Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

An Analysis of the Impact of Coronavirus Disease (COVID-19) on the Korean Beef Cattle Market and Farm Labor Demand for Korean Beef Cattle (코로나19가 한육우 시장 및 한육우 농가 인력수요에 미치는 영향분석)

  • Kim, In-Seck
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.171-188
    • /
    • 2020
  • The Coronavirus disease (COVID-19), first identified in China in December 2019, has widely spread worldwide and is an ongoing pandemic. It is expected that the ripple effect of COVID-19 on the global economy including the agricultural sector will increase substantially if not properly controlled shortly. This study examines the potential impact of COVID-19 on the Korean beef cattle sector and farm labor demand for Korean beef cattle using a dynamic partial equilibrium model. The agricultural production value and farm labor demand for Korean beef cattle in the scenario assuming pessimistic GDP growth rate (-1.2% in 2020) with no direct supply shocks fell by up to 4.00% and 0.67%, respectively, compared to the baseline which represents the future without COVID-19 outbreak. On the other hand, the agricultural production value and farm labor demand for Korean beef cattle in the scenario assuming both pessimistic GDP growth rate and supply shocks (-12.7% beef imports and + 2.4% feed cost in 2020) increased by up to 12.08% and 1.99%, respectively, compared to the baseline.

Development of monoclonal antibody capture ELISA for the detection of antibodies against transmissible gastroenteritis virus

  • Oh, Yeonsu;Tark, Dongseob
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Transmissible gastroenteritis (TGE) is a disease confined to pigs of all ages, and can be a significant cause of economic loss in breeding herds, primarily because of the very high piglet mortality. The causative agent is a coronavirus, an enveloped positive strand RNA virus and closely related but non-enteropathogenic porcine respiratory coronavirus (PRCV). Although the TGEV has declined with its innocent relative, PRCV, further genome changes could not be excluded. Therefore, the herd-level immunity against this virus is important for the prevention of disease and should be carefully monitored. The aim of this study is to develop monoclonal antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) which can rapidly and accurately determine a large numbers of serum samples for surveillance purpose, and to compare the ELISA with a TGEV-specific serum neutralization test. The MAC-ELISA was sufficiently achieved, and the comparison with the virus-specific serum neutralization assays for 713 sera from pig farms showed a high correlation ($r^2=0.812$, P<0.001). The specificity and sensitivity of MAC-ELISA for the serum neutralization test 91.9% and 91.6%, respectively, which means that the antibody detected by the MAC-ELISA could be said to be protective antibodies. In conclusion, the developed MAC-ELISA would be very helpful in evaluating protective antibodies against TGEV.

Brief Summary on Nursing Studies regarding COVID-19

  • Hyun, Sookyung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.47-55
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic continuously influences on the health and well-being of people and communities worldwide. The purpose of this study was to explore the published research articles in the fields of nursing and health during the COVID-19 pandemic. The research design is an exploratory study. Samples are the abstracts of the articles from a literature database, PubMed, that were published from January 1st, 2020 to April 15th, 2021. We used a MeSH term, 'nursing' and "COVID-19" to retrieve articles that are related to COVID-19. Five hundred and fifty-five articles were retrieved. Two hundred and sixteen articles were excluded as they were not met the inclusion criteria. The total number of articles used in this study was three hundred and thirty-nine. The average number of articles published during the data collection period was 21.9. Seven topics were discovered from the abstracts of the articles: COVID-19 management and guidance; Perinatal COVID-19 and breastfeeding; Nurse; Health service and support; Patient care; Research; and Education and experience. This study revealed some interesting topics from the articles related to COVID-19 and provided some sense of research areas that may be interesting and allow us to develop important research questions about nursing science and nursing practice.