• Title/Summary/Keyword: Corona discharge

Search Result 474, Processing Time 0.034 seconds

Linearity Verification of Measured Voltage Deterioration of High Voltage Cable based on Weibull Lifetime Index (와이불 수명지수에 의한 고전압 케이블의 전압열화 측정값의 선형성 확인)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.227-232
    • /
    • 2016
  • As the demand for electric power increases, all devices operating in power stations and all devices adopted in order to deliver distant loads need to be operating in perfect condition at the level of reliability expected by consumers. In general, the lifetime of cables used in delivering high power is declared to be 30 years from the time of production. Deterioration (which is the worsening of electric properties) starts from the very moment of operation. In spite of the reduction in reliability caused by deterioration, the reality is that cables often operate at considerable risk of accidents because the reliability of operation has not been diagnosed. We have invented a device to diagnose the deterioration processes of high-voltage power cables. It has been installed and is currently operating at Korea Western Power Co., Ltd., located in Chungnam, Korea. In previously published papers we have shown graphs obtained by plotting insulation resistances versus time, through analyzing the data extracted from operating cables using the devices we have invented. In this paper, we verify that the previously plotted graphs agree with the life time index of Weibull distribution of probability.

Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field (전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.

Effect of Secondary Flows on the Particle Collection Efficiency in Single Stage Electrostatic Precipitator (1단 전기 집진기에서 2차 유동이 집진 효율에 미치는 영향)

  • Lee, Jae-Bok;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.251-259
    • /
    • 2000
  • The ionic wind formed in a nonuniform electric field has been recognized to have a significant effect on particle collection in an electrostatic precipitator(ESP). Under normal operating conditions the effect of ionic wind is not pronounced. However, as the flow velocity becomes smaller, the ionic wind becomes pronounced and induces secondary flow, which has a significant influence on the flow field and the particle collecting efficiency. In this paper, experiments for investigating the effect of secondary flow on collection efficiencies were carried out by changing the flow velocities in 0.2-0.7m/s and the applied voltages in 9-11kV/cm. The particle size distributions and concentrations are measured by DMA and CNC. To analyze the experimental results, numerical analysis of electric filed in ESP was carried out. It shows that particle collection is influenced by two independent dimensionless numbers, $Re_{ehd}\;and\;Re_{flow}$ not by $N_{ehd}$ alone. When $Re_{flow}$, decreases for constant $Re_{ehd}$, the secondary flow prohibits the particle collection. But when $Re_{ehd}$ increases for constant $Re_{flow}$, it enhances the particle collection by driving the particles into the collection region.

Design and Performance Evaluation of a Faraday Cage and an Aerosol Charger (패러데이 케이지와 에어로졸 하전기의 설계 및 성능평가)

  • Ji, Jun-Ho;Bae, Kwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.315-323
    • /
    • 2004
  • An electrical cascade impactor is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. A Faraday cage and an aerosol charger, which are basic components of the electrical cascade impactor, were designed and evaluated in this study. The low-level current response of the Faraday cage was investigated with changing particle size and air flow rate by using sodium chloride (NaCl) particles. The response of the prototype Faraday cage was very similar to that of a commercial aerosol electrometer (TSI model 3068) within ${\pm}$5% for singly-charged particles. The response linearity of the prototype Faraday cage could be extended up to flow rate of 30 L/min. For the performance evaluation of the aerosol charger the monodisperse liquid dioctyl sebacate (DOS) particles, with diameters of 0.1∼0.8$\mu\textrm{m}$, were generated using spraying from an atomizer followed by evaporation-condensation process. Typical performance parameters of the aerosol charger such as P$.$n, wall loss, and elementary charges per particle were evaluated. The performance of the prototype aerosol charger was found to be close to that of the aerosol charger used in an electrical low pressure impactor (ELPI, Dekati).

Surface static properties in polymer hybrid material after plasma treatment (플라즈마 처리한 고분자 복합재료의 표면특성변화)

  • Park, Jong-Kwan
    • 전자공학회논문지 IE
    • /
    • v.44 no.3
    • /
    • pp.6-11
    • /
    • 2007
  • In this study, which was performed to identify a degradation mechanism in macromolecular insulating material, the contact angle, surface potential decay, surface resistance rate and XPS analysis were compared after exposure of fibre-glass-reinforced polymer laminate to plasma discharge. In the case of chemical changes arising from plasma treatment, carboxyl radicals were generated mainly in the plasma-treated surface, which was rapidly changed to a hydrophilic surface. In the corona potential decay study to determine the electrical changes, leading to a negative surface for the untreated specimen. However, in the case of the hydrophilic surface, a lot of carboxy radicals(-COO) acting as positive polarity were generated, resulting in a positive surface. Owing to such a positive surface, the charges of applied negative polarity were decreased rapidly.

Photo-grafting Dyeing of Wool Fabrics with ${\alpha}$-bromoacrylamide reactive dye (반응성 염료를 이용한 양모직물의 광그라프트 염색)

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.31-31
    • /
    • 2011
  • Lanasol dyes containing ${\alpha}$-bromoacrylamide or ${\alpha},{\beta}$-dibromopropionylamide group are used for wool dyeing. They are normally applied to wool under pH 4.5 to 6.5 at $100^{\circ}C$. Although wool fabric can be dyed to obtain deep colour, high light and wet fastness, the dyeing processes need long dyeing time at high temperature, with salt addition, which inevitably causes environmental problems. Grafting is a modification method for textile where monomers are covalently bonded onto the polymer chain. It can be initiated by ozone, ${\gamma}$ rays, electron beams, plasma, corona discharge and UV irradiation. Coloration by UV-induced photografting exhibits several advantages such as fast reaction rate, energy saving, simple equipment, easy exploitation and environmentally friendliness. Also it requires much lower energy compared to the conventional dyeing and less damage to the substrate. In this study, a direct sequential UV-induced photografting onto wool fabrics was discussed. To understand the graft polymerization mechanism further, several characterization methods were used. Moreover, the effects of several principal factors on the graft photopolymerization were investigated. Furthermore, the colorfastness results were compared with conventional dyeing methods.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Winding Coil Prepared with Polyamideimide/Nanosilica Enamelled Wire

  • Park, Jae-Jun;Woo, Myung-Ha;Lee, Jae-Young;Hwang, Don-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.297-301
    • /
    • 2016
  • The effects of ambient temperature and diameter on the insulation lifetime of winding coils prepared with polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires were investigated. The winding coils were made of enameled wire with enamel thickness of 30~50 μm. The thickness and width of the rectangular copper wires were 0.77~0.83 mm and 1.17~1.23 mm, respectively. The insulation breakdown lifetime decreased with increasing ambient temperature regardless of wire type and winding coil diameter under an inverter surge of 1.5 kV/20 kHz. The insulation breakdown lifetimes of φ5 mm winding coils at 150, 200, and 250℃ were 11.38, 5.19, and 4.22 min respectively, and those of φ10 mm winding coils at 150, 200, and 250℃ were 11.32, 5.79, and 4.57min respectively. The winding coil diameter had little effect on the insulation lifetime.

Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle (미세 수관 노즐의 전기유체역학적 수적 분사특성)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

Development of Formulas for Predicting Radio Noise from Overhead HVAC Transmission Lines using Least Squares Optimization Method (최소자승법에 의한 초고압 가공 송전선로의 라디오 잡음장해 예측계산식 개발)

  • Yang, Gwang-Ho;Ju, Mun-No;Myeong, Seong-Ho;Sin, Gu-Yong;Lee, Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • The radio noise produced by corona discharge in high voltage transmission lines is one of the most important line design considerations. Therefore it is necessary for transmission line designers to pre-evaluate radio noise using prediction formulas or field test results. In this paper, more accurate and useful formulas for predicting radio noise during fair and foul weathers in high voltage AC transmission lines were proposed through comparison with the existing formulas. Also it was verified by comparing with the long-term measured data from operating lines that the proposed formulas are more accurate. The proposed prediction formulas are developed by the applications of nonlinear least squares optimization method to radio noise database collected from lines throughout the world.

  • PDF

Experiment on the Polish Condition of Needle Electrode on the Insulation Properties of Gas Mixtures (침전극 가공상태에 따른 혼합가스의 절연특성에 관한 실험)

  • Go, Yeon-Seong;Yeo, Dong-Goo;Seo, Ho-Joon;Lee, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.339-340
    • /
    • 2006
  • AC spark discharge voltage of SF6/CO2and SF6/N2 containing various mixed rate in volume percent (1, 5 and 10%) of SF6 in non-uniform fields are investigated. The needle to plane electrode gap spacing was 5 and 10 mm, and the gas pressure was varied within the range of 0.1~0.7 MPa. We have observed a N-characteristic typical for the electronegative gases even in gas mixtures of 1% SF6 with CO2 and N2 as buffer gases. Especially, the materials of the needle electrode affect the insulation properties of the gas mixtures drastically. On the contrary to the case of needle electrodes made by mild steel or high carbon steel, the N-characteristics are hardly perceived in the case of stainless steel needle in this experiment.

  • PDF