• Title/Summary/Keyword: Corner detector

Search Result 48, Processing Time 0.029 seconds

New Gray Level Corner Point Detection Method (새로운 그레이 레벨 코너점 검출 방법)

  • 나재형;오해석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1062-1068
    • /
    • 2004
  • In this paper, we introduce a new gray level comer detection method to recognize corner points accurately. The new corner detector divides the corner region into many homocentric circles according to the window size, and calculates the corner response and angle of corner area about each layer to get an accurate corner point. The new corner detector has a hierarchical structure so it can detect corner point more quickly than general gray level corner detector

Hue-based Noise-tolerant Corner Detector Robust to Shadows (그림자에 강건한 색상 기반 내잡음성 코너 검출자)

  • 박기현;박은진;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.239-245
    • /
    • 2004
  • A hue-based noise-tolerant corner detector is proposed for the exact detection of the real corners in spite of the shadows and random noise. Based on the fact that the hue gradient at the border of the opaque objects' shadow is smaller than the intensity gradient in HSI (hue-saturation-intensity) color space, the effects of shadow are eliminated by introducing the hue-weighted combination of vector gradient to the proposed corner detector. Furthermore, the proposed corner detector is robust to random noise by offsetting the contribution to the corner candidate when the polarities of the color gradients of the pixel pairs are out of phase each other. Results of the experiment show that the proposed corner detector can effectively detect the real corners.

Comer Detection in Gray Lavel Images for Wafer Die Position Recognition (웨이퍼 다이 위치 인식을 위한 명암 영상 코너점 검출)

  • 나재형;오해석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.792-798
    • /
    • 2004
  • In this paper, we will introduce a new corner detector for the wafer die position recognition. The die position recognition procedure is necessary for WSCSP(Wafer Scale Chip Scale Packaging) technology, decide the accuracy of post-procedure. We present a hierarchical gray level corner detection method for the recognition of the die position from a wafer image. The new corner detector divides the corner region into many homocentric circles, and calculates the comer response and the angle of direction about each circle to get an accurate toner point. The new corner detector has a hierarchical structure so it can detect comer point more quickly than general gray level corner detector.

Feature Detection using Geometric Mean of Eigenvalues of Gradient Matrix (그레디언트 행렬 고유치의 기하 평균을 이용한 특징점 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 2014
  • It is necessary to detect the feature points existing simultaneously in both images and then find the corresponding relationship between the detected feature points. We propose a new feature detector based on geometric mean of two eigenvalues of gradient matrix which is able to measure the change of pixel intensities. The corner response of the proposed detector is proportional to the geometric mean and also the difference of two eigenvalues in the case of same geometric mean. We analyzed the localization error of the feature detection using aerial image and artificial image with various types of corners. The localization error of the proposed detector was smaller than that of the typical corner detector, Harris detector.

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

Automated Generation of Corner Detectors Using Genetic Programming (Genetic Programming을 이용한 코너 검출자의 자동생성)

  • Kim, Young-Kyun;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.580-585
    • /
    • 2009
  • This paper introduces GP(Genetic Programming) based corner detectors for an image processing. Various empirical algorithms have been studied to improve computational speed and accuracy including typical approaches, such as Harris and SUSAN. The these techniques are highly efficient, because properties of corner points are inspected and reflected into the algorithms. However these approaches are limited in discovering an innovative algorithm. In this study, we try to discover a more efficient technique by creating corner detector automatically using evolution of GP. The proposed method is compared to the existing corner detectors for test images.

Scale and Rotation Robust Genetic Programming-Based Corner Detectors (크기와 회전변화에 강인한 Genetic Programming 기반 코너 검출자)

  • Seo, Ki-Sung;Kim, Young-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based robust corner detectors for scaled and rotated images. Various empirical algorithms have been studied to improve computational speed and accuracy including approaches, such as the Harris and SUSAN, FAST corner detectors. These techniques are highly efficient for well-defined corners, but are limited to corner-like edges which are often generated in rotated images. It is very difficult to detect correctly edges which have characteristics similar to corners. In this paper, we have focused the above challenging problem and proposed Genetic Programming-based automated generation of corner detectors which is robust to scaled and rotated images. The proposed method is compared to the existing corner detectors on test images and shows superior results.

Text Region Extraction from Videos using the Harris Corner Detector (해리스 코너 검출기를 이용한 비디오 자막 영역 추출)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.646-654
    • /
    • 2007
  • In recent years, the use of text inserted into TV contents has grown to provide viewers with better visual understanding. In this paper, video text is defined as superimposed text region located of the bottom of video. Video text extraction is the first step for video information retrieval and video indexing. Most of video text detection and extraction methods in the previous work are based on text color, contrast between text and background, edge, character filter, and so on. However, the video text extraction has big problems due to low resolution of video and complex background. To solve these problems, we propose a method to extract text from videos using the Harris corner detector. The proposed algorithm consists of four steps: corer map generation using the Harris corner detector, extraction of text candidates considering density of comers, text region determination using labeling, and post-processing. The proposed algorithm is language independent and can be applied to texts with various colors. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Study of the Haar Wavelet Feature Detector for Image Retrieval (이미지 검색을 위한 Haar 웨이블릿 특징 검출자에 대한 연구)

  • Peng, Shao-Hu;Kim, Hyun-Soo;Muzzammil, Khairul;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.160-170
    • /
    • 2010
  • This paper proposes a Haar Wavelet Feature Detector (HWFD) based on the Haar wavelet transform and average box filter. By decomposing the original image using the Haar wavelet transform, the proposed detector obtains the variance information of the image, making it possible to extract more distinctive features from the original image. For detection of interest points that represent the regions whose variance is the highest among their neighbor regions, we apply the average box filter to evaluate the local variance information and use the integral image technique for fast computation. Due to utilization of the Haar wavelet transform and the average box filter, the proposed detector is robust to illumination change, scale change, and rotation of the image. Experimental results show that even though the proposed method detects fewer interest points, it achieves higher repeatability, higher efficiency and higher matching accuracy compared with the DoG detector and Harris corner detector.

A Novel Corner Detector using a Non-cornerness Measure

  • Park, Seokmok;Cho, Woon;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.253-261
    • /
    • 2017
  • In this paper, a corner detection method based on a new non-cornerness measure is presented. Rather than evaluating local gradients or surface curvatures, as done in previous approaches, a non-cornerness function is developed that can identify stable corners by testing an image region against a set of desirable corner criteria. The non-cornerness function is comprised of two steps: 1) eliminate any pixel located in a flat region and 2) remove any pixel that is positioned along an edge in any orientation. A pixel that passes the non-cornerness test is considered a reliable corner. The proposed method also adopts the idea of non-maximum suppression to remove multiple corners from the results of the non-cornerness function. The proposed method is compared with previous popular methods and is tested with an artificial test image covering several corner forms and three real-world images that are universally used by the community to evaluate the accuracy of corner detectors. The experimental results show that the proposed method outperforms previous corner detectors with respect to accuracy, and that it is suitable for real-time processing.