• Title/Summary/Keyword: Corner Point

Search Result 194, Processing Time 0.03 seconds

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

Three-dimensional analysis of soft and hard tissue changes after mandibular setback surgery in skeletal Class III patients (골격성 3급 부정교합 환자의 하악골 후퇴술 시행후 안모변화에 대한 3차원적 연구)

  • Park, Jae-Woo;Kim, Nam-Kug;Kim, Myung-Jin;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.320-329
    • /
    • 2005
  • The three-dimensional (3D) changes of bone, soft tissue and the ratio of soft tissue to bony movement was investigated in 8 skeletal Class III patients treated by mandibular setback surgery. CT scans of each patient at pre- and post-operative states were taken. Each scan was segmented by a threshold value and registered to a universal three-dimensional coordinate system, consisting of an FH plane, a mid-sagittal plane, and a coronal plane defined by PNS. In the study, the grid parallel to the coronal plane was proposed for the comparison of the changes. The bone or soft tissue was intersected by the projected line from each point on the gird. The coordinate values of intersected point were measured and compared between the pre- and post-operative models. The facial surface changes after setback surgery occurred not only in the mandible, but also in the mouth corner region. The soft tissue changes of the mandibular area were measured relatively by the proportional ratios to the bone changes. The ratios at the mid-sagittal plane were $77\~102\%(p<0.05)$. The ratios at all other sagittal planes had similar patterns to the mid-sagittal plane, but with decreased values. And, the changes in the maxillary region were calculated as a ratio, relative to the movement of a point representing a mandibular movement. When B point was used as a representative point, the ratios were $14\~29\%$, and when Pog was used, the ratios were $17\~37\%(9<0.05)$. In case of the 83rd point of the grid, the ratios were $11\~22\%(p<0.05)$.

A Study on Displacement Measurement Hardware of Retaining Walls based on Laser Sensor for Small and Medium-sized Urban Construction Sites

  • Kim, Jun-Sang;Kim, Jung-Yeol;Kim, Young-Suk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1250-1251
    • /
    • 2022
  • Measuring management is an important part of preventing the collapse of retaining walls in advance by evaluating their stability with a variety of measuring instruments. The current work of measuring management requires considerable human and material resources since measurement companies need to install measuring instruments at various places on the retaining wall and visit the construction site to collect measurement data and evaluate the stability of the retaining wall. It was investigated that the applicability of the current work of measuring management is poor at small and medium-sized urban construction sites(excavation depth<10m) where measuring management is not essential. Therefore, the purpose of this study is to develop a laser sensor-based hardware to support the wall displacement measurements and their control software applicable to small and medium-sized urban construction sites. The 2D lidar sensor, which is more economical than a 3D laser scanner, is applied as element technology. Additionally, the hardware is mounted on the corner strut of the retaining wall, and it collects point cloud data of the retaining wall by rotating the 2D lidar sensor 360° through a servo motor. Point cloud data collected from the hardware can be transmitted through Wi-Fi to a displacement analysis device (notebook). The hardware control software is designed to control the 2D lidar sensor and servo motor in the displacement analysis device by remote access. The process of analyzing the displacement of a retaining wall using the developed hardware and software is as follows: the construction site manager uses the displacement analysis device to 1)collect the initial point cloud data, and after a certain period 2)comparative point cloud data is collected, and 3)the distance between the initial point and comparison point cloud data is calculated in order. As a result of performing an indoor experiment, the analyses show that a displacement of approximately 15 mm can be identified. In the future, the integrated system of the hardware designed here, and the displacement analysis software to be developed can be applied to small and medium-sized urban construction sites through several field experiments. Therefore, effective management of the displacement of the retaining wall is possible in comparison with the current measuring management work in terms of ease of installation, dismantlement, displacement measurement, and economic feasibility.

  • PDF

Lip Contour Detection by Multi-Threshold (다중 문턱치를 이용한 입술 윤곽 검출 방법)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.431-438
    • /
    • 2020
  • In this paper, the method to extract lip contour by multiple threshold is proposed. Spyridonos et. el. proposed a method to extract lip contour. First step is get Q image from transform of RGB into YIQ. Second step is to find lip corner points by change point detection and split Q image into upper and lower part by corner points. The candidate lip contour can be obtained by apply threshold to Q image. From the candidate contour, feature variance is calculated and the contour with maximum variance is adopted as final contour. The feature variance 'D' is based on the absolute difference near the contour points. The conventional method has 3 problems. The first one is related to lip corner point. Calculation of variance depends on much skin pixels and therefore the accuracy decreases and have effect on the split for Q image. Second, there is no analysis for color systems except YIQ. YIQ is a good however, other color systems such as HVS, CIELUV, YCrCb would be considered. Final problem is related to selection of optimal contour. In selection process, they used maximum of average feature variance for the pixels near the contour points. The maximum of variance causes reduction of extracted contour compared to ground contours. To solve the first problem, the proposed method excludes some of skin pixels and got 30% performance increase. For the second problem, HSV, CIELUV, YCrCb coordinate systems are tested and found there is no relation between the conventional method and dependency to color systems. For the final problem, maximum of total sum for the feature variance is adopted rather than the maximum of average feature variance and got 46% performance increase. By combine all the solutions, the proposed method gives 2 times in accuracy and stability than conventional method.

Experimental and numerical analysis of new bricks made up of polymer modified-cement using expanded vermiculite

  • Koksal, Fuat;del Coz Diaz, Juan J.;Gencel, Osman;Alvarez Rabanal, Felipe P.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.319-335
    • /
    • 2013
  • In this paper, the properties of the cement mortar modified with styrene acrylic ester copolymer were investigated. Expanded vermiculite as lightweight aggregate was used for making the polymer modified mortar test specimens. To study the effect of polymer-cement ratio and vermiculite-cement ratio on various properties, specimens were prepared by varying the polymer-cement and vermiculite-cement ratios. Tests of physical properties such as density, water absorption, thermal conductivity, three-point flexure and compressive tests were made on the specimens. Furthermore, a coupled thermal-structural finite element model of an entire corner wall was modelled in order to study the best material configuration. The wall is composed by a total of 132 bricks of $120{\times}242{\times}54$ size, joined by means of a contact-bonded model. The use of advanced numerical methods allows us to obtain the optimum material properties. Finally, comparisons of polymer-cement and vermiculite-cement ratios on physical properties are given and the most important conclusions are exposed.

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

Antiblurry Dejitter Image Stabilization Method of Fuzzy Video for Driving Recorders

  • Xiong, Jing-Ying;Dai, Ming;Zhao, Chun-Lei;Wang, Ruo-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3086-3103
    • /
    • 2017
  • Video images captured by vehicle cameras often contain blurry or dithering frames due to inadvertent motion from bumps in the road or by insufficient illumination during the morning or evening, which greatly reduces the perception of objects expression and recognition from the records. Therefore, a real-time electronic stabilization method to correct fuzzy video from driving recorders has been proposed. In the first stage of feature detection, a coarse-to-fine inspection policy and a scale nonlinear diffusion filter are proposed to provide more accurate keypoints. Second, a new antiblurry binary descriptor and a feature point selection strategy for unintentional estimation are proposed, which brought more discriminative power. In addition, a new evaluation criterion for affine region detectors is presented based on the percentage interval of repeatability. The experiments show that the proposed method exhibits improvement in detecting blurry corner points. Moreover, it improves the performance of the algorithm and guarantees high processing speed at the same time.

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

A Watermark Embedding Technique for Still Images Using Cross-Reference Points (교차 참조 점을 이용한 정지영상의 워터마크 삽입기법)

  • Lee, Hang-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.165-172
    • /
    • 2006
  • In this paper we present a technique for detecting cross-reference points that allows improving watermark detect-ability. In general, Harris detector is commonly used for finding salient points. Harris detector is a kind of combined corner and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. The new method proposed in this paper used not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we constructed pre-specified number of virtual lines from top to bottom and left to right, and several of cross points were selected by a random key. These selected points specify almost same positions with the accuracy more than that of Harris detector after digital attacks. These points were arranged by a random key, and blocks centered in these points were formed. A reference watermark is formed by a block and embedded in the next block. Because same alteration is applied to the watermark generated and embedded blocks. the detect-ability of watermark is improved even after digital attacks.

Structural Analysis of Cabinet in Built-in Side-by-Side Refrigerator and Evaluation of Door Height Difference and Door Flatness Difference (빌트인 양문형 냉장고의 캐비닛 구조해석 및 도어 상하단차와 앞뒤단차의 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • Since the freezer compartment and the refrigerating compartment are located side by side in a side-by-side refrigerator, the problems of the door height difference (DHD) and door flatness difference (DFD) have been constantly raised. Deformation of the cabinet of a built-in side-by-side refrigerator under food and thermal loads was analyzed by the finite element software ANSYS. The DHD and DFD, occurring due to the deformation of the cabinet, evaluated. From the results of the analysis of the cabinet, the 3D CAD software CATIA was used to geometrically translate and rotate the freezing and refrigerating compartment doors, in consideration of the displacement of the hinge fastening point. Then, the coordinates of two points on the upper corner of the doors were determined, and the DHD and DFD were obtained. It found that the thermal load, occurring under normal operation conditions, decreases the door height difference, but increases the door flatness difference. Values of the analyzed DHD and DFD appear smaller than the acceptance criteria used by the refrigerator manufacturer.