• Title/Summary/Keyword: Corn silage

Search Result 304, Processing Time 0.027 seconds

Effect of Drought Conditions on Growth, Forage Production and Quality of Silage Corn at Paddy Field (가뭄에 따른 논 재배 사일리지용 옥수수의 생육특성, 생산성 및 품질 비교)

  • Ji, Hee-Chung;Cho, Jung-Ho;Lee, Sang-Hoon;Kim, Won-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • This experiment was carried out to know adaptability and forage production and quality of corn hybrid for silage at paddy field of Jeonnam and Cheonan region. The growth, forage production and quality of silage corn in normal condition showed much better than drought condition at paddy field. Among the growth characteristics, 'Kangdaok' hybrids was somewhat strong for drought stress, then and good at stem diameter, drought stress, sugar content, stay green, disease and insect resistance. Fresh yield of 'Kwangpyongok' and 'Kangdaok' hybrid at drought paddy field were the highest as 9,714kg and 9,126 kg/ha per ha among corn hybrids. Among the ten hybrids, dry yield of 'Kangdaok' hybrid at drought paddy field was the highest as 5,548 kg per ha. The result of this study showed that 'Kangdaok' hybrid had good growth characters and forage productivity at drought condition and dry matter yield and TDN yield also were 21.6% and 19.3% level compared with normal paddy field.

Net Portal Fluxes of Nitrogen Metabolites in Holstein Steers Fed Diets Containing Different Dietary Ratios of Whole-crop Corn Silage and Alfalfa Hay

  • EL-Sabagh, M.;Imoto, S.;Yukizane, K.;Yokotani, A.;Sugino, T.;Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2009
  • The objectives of the present study were to investigate the effects of different dietary ratios of whole-crop corn silage and alfalfa hay on nitrogen (N) digestion, duodenal flow and metabolism across the portal-drained viscera (PDV) of growing beef steers, and to elucidate their relationships. Four steers (236${\pm}$7 kg BW) fitted with duodenal cannulae and chronic indwelling catheters into the portal and mesenteric veins and abdominal aorta were used in a 4${\times}$4 Latin square design. Animals were fed (at 12-h intervals) the 4 diets consisting of whole-crop corn silage (C) and alfalfa hay (A) in 80:20 (C8A2), 60:40 (C6A4), 40:60 (C4A6) and 20:80 (C2A8) ratios of which dietary crude protein (CP) was 10.5, 12.0, 13.5 and 15.0% of dry matter (DM), respectively. Feeding level was restricted to 95% of ad libitum intake to measure N digestion, blood flow and net flux of N across the PDV. Digestibility of DM and neutral detergent fiber and digestible energy intake linearly increased as the ratio of alfalfa hay increased. The N intake, duodenal flow and intestinal disappearance increased linearly with increasing alfalfa hay. Arterial and portal concentrations of ${\alpha}$-amino N showed a quadratic response to increasing levels of alfalfa hay and were the highest in steers fed the C6A4 diet. The net PDV release of ${\alpha}$-amino N and ammonia N increased linearly with increasing alfalfa hay, but urea N uptake by PDV did not differ among diets. As a percentage of apparently digested N in the total gut, net PDV release of ${\alpha}$-amino N linearly decreased from 66 to 48% with increasing alfalfa hay. Conversely, net PDV recovery of ${\alpha}$-amino N to intestinal N disappearance varied with increasing alfalfa hay accounting for 49, 50, 58 and 61% on C8A2, C6A4, C4A6 and C2A8 diets, respectively. Net PDV uptake of urea N, relative to apparently digested N, linearly decreased from 81 to 25% as alfalfa hay increased from 20 to 80% of DM intake. Considering PDV uptake of urea N, microbial efficiency and conversion of total tract digested N to PDV ${\alpha}$-amino N net supply, a diet consisting of 80% whole-crop corn silage and 20% alfalfa hay (10.5% CP) was the best, while considering the quantities of intestinal N disappearance and ${\alpha}$-amino N absorption, a diet of 20% whole-crop corn silage and 80% alfalfa hay (15% CP) would be preferred. The proportion of ${\alpha}$-amino N recovered by PDV relative to the intestinal N disappearance may vary with energy intake level of mixed forage diets.

Antifungal and carboxylesterase-producing bacteria applied into corn silage still affected the fermented total mixed ration

  • Dimas Hand Vidya Paradhipta;Myeong Ji Seo;Seung Min Jeong;Young Ho Joo;Seong Shin Lee;Pil Nam Seong;Hyuk Jun Lee;Sam Churl Kim
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.720-730
    • /
    • 2023
  • Objective: This study investigated the effects of corn silage as a source of microbial inoculant containing antifungal and carboxylesterase-producing bacteria on fermentation, aerobic stability, and nutrient digestibility of fermented total mixed ration (FTMR) with different energy levels. Methods: Corn silage was used as a bacterial source by ensiling for 72 d with an inoculant mixture of Lactobacillus brevis 5M2 and L. buchneri 6M1 at a 1:1 ratio. The corn silage without or with inoculant (CON vs MIX) was mixed with the other ingredients to formulate for low and high energy diets (LOW vs HIGH) for Hanwoo steers. All diets were ensiled into 20 L mini silo (5 kg) for 40 d in quadruplicate. Results: The MIX diets had lower (p<0.05) acid detergent fiber with higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber compared to the CON diets. In terms of fermentation characteristics, the MIX diets had higher (p<0.05) acetate than the CON diets. The MIX diets had extended (p<0.05) lactic acid bacteria growth at 4 to 7 d of aerobic exposure and showed lower (p<0.05) yeast growth at 7 d of aerobic exposure than the CON diets. In terms of rumen fermentation, the MIX diets had higher (p<0.05) total fermentable fraction and total volatile fatty acid, with lower (p<0.05) pH than those of CON diets. The interaction (p = 0.036) between inoculant and diet level was only found in the immediately fermentable fraction, which inoculant was only effective on LOW diets. Conclusion: Application of corn silage with inoculant on FTMR presented an antifungal effect by inhibiting yeast at aerobic exposure and a carboxylesterase effect by improving nutrient digestibility. It also indicated that fermented feedstuffs could be used as microbial source for FTMR. Generally, the interaction between inoculant and diet level had less effect on this FTMR study.

Yield and Quality of Silage Corn as Affected by Hybrid Maturity, Planting Date and Harvest Stage

  • Kim, J.D.;Kwon, C.H.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1705-1711
    • /
    • 2001
  • Silage corn (Zea mays L) is grown extensively in livestock operations, and many managements focus on forage yield. This experiment was conducted at Seoul National University (SNU) Experimental Livestock Farm, Suwon in 1998. We determined the effect of planting date and harvest stage on forage yield and quality responses of corn hybrids (five relative maturity groups). The five maturity groups (100 d, 106 d, 111 d, 119 d and 125 d) were planted on 15 April and 15 May, and harvested at maturity stages (1/3, 1/2 and 2/3 kernel milkline). Whole plant dry matter (DM) and ear percentages had significant differences among corn hybrids. Ear percentages of early maturing corns (100 d and 106 d) were higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date for all corn hybrids. The DM and total digestible nutrients (TDN) yields of the 106 d and 111 d corn hybrids were higher than other hybrids, and the DM and TDN yields at the early planting date were higher than that at the late planting date. The acid detergent fiber (ADF) and neutral detergent fiber (NDF) percentages were greater for the late maturity corn hybrids. For plants of the early planting date, the ADF and NDF percentages were lower than for those of late planting date for hybrids. From the comparison among harvest stages, ADF and NDF percentages were decreased as harvest stage progressed. The TDN, net energy for lactation (NEL), and cellulase digestible organic matter of dry matter (CDOMD) were decreased as maturity of corn hybrid delayed. The TDN, NEL, and CDOMD values at the early planting date were higher than those at the late planting date among for corn hybrids. From the comparison among harvest dates, TDN, NEL, and CDOMD values were increased as harvest stage progressed. The correlation coefficient for DM percentage of grain at harvest with DM and TDN yields were 0.68*** and 0.76***, respectively. And the correlation coefficient for ear percentage with ADF, NDF, and CDOMD were -0.81***, -0.82*** and 0.73***, respectively. Our study showed differences of silage corn in forage production and quality resulting from hybrid maturity, planting date, and harvest stage. We believe that for the best silage corn, selection of the hybrid and best management practices are very important.

Formulating Diets on an Equal Forage Neutral Detergent Fiber from Various Sources of Silage for Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.660-664
    • /
    • 2003
  • An attempt was made to evaluate the effects of total mixed rations (TMR) containing 17.5% forage neutral detergent fiber (NDF) from paragrass, paragrass+cassava chips and corn silages on the performance of dairy cows in the tropics. Experimental dietary treatments contained a similar content of total NDF, total non-fiber carbohydrates, crude protein and energy. Maximum and minimum temperature humidity index during the experimental period were 79.1-80.6 and 66.8-68.6, respectively. Among silage sources, there were no differences (p>0.05) in concentrations of acetic and propionic acids and butyric acid was undetectable. Concentration of lactic acid was higher (p<0.01) in corn silage but its pH was lower (p<0.01) than in paragrass and paragrass+cassava silages. Dairy cows on TMR containing corn silage not only gained more weight (161 and 46 vs. -189 g/d) but also consumed more feed (18.47, 15.84 and 14.49 kg/d), and produced more milk (23.89, 22.03 and 20.83 kg/d), 4% fat corrected milk (25.47, 24.05 and 22.02 kg/d), solids-not-fat (1.99, 18.3 and 1.73 kg/d) and total solid (3.10, 2.85 and 2.64 kg/d) compared with those on TMR containing paragrass+cassava and paragrass silages, respectively (p<0.01). Dairy cows on TMR containing paragrass+cassava silage were better in these respects (p<0.01). These results suggest that in formulating diets on an equal NDF basis for different forage qualities, diets higher in forage quality can stimulate higher DMI for dairy cows in the tropics and thus improve productivity.

Study on No-tillage Silage Corn Production with Legume Hairy Vetch (Vicia villosa Roth) Cover II. Changes of yield and nitrogen upake of corn by N fertilizer and hairy vetch cover (헤어리베치 피복을 이용한 옥수수 무경운 재배에 관한 연구 II. 질소시비 및 헤어리베치 피복에 의한 옥수수의 수량 및 질소 흡수량의 변화)

  • 서종호;이호진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.2
    • /
    • pp.123-128
    • /
    • 1998
  • Legume winter cover crop hairy vetch(Vicia villosa Roth, HV) can supply mineral nitrogen for silage corn by HV cover killed. The purphose of this study was to understand changes of soil mineral N, yield and N uptake of silage corn by N level (0, 135kgFN/ha) and cover cmp(no cover crop: NCC, hairy vetch cover crop: HVC) at field of Crop Experiment Station in 1996. HV growth decreased soil mineral N concentration before seeding corn, but killed HV cover increased concentration of soil mineral N at surface soil (0~7.5cm) at six-leaf stage of corn. Total dry matter(DM) and N uptake of corn averaged over N level was more decreased in HVC than in NCC at silk stage, but N uptake of corn after silk was more increased in HVC than in NCC by N mineralized fiom HV killed, especially in OkgFNJha. N fertilization increased total DM and and N uptake of corn averaged over cover crop, especially more increased the DM and N uptake before silk stage. Early application of N fertilizer was recommendable in netillage silage corn using hairy vetch cover crop.

  • PDF

Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

  • Chen, Lei;Guo, Gang;Yuan, Xianjun;Shimojo, Masataka;Yu, Chengqun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2014
  • The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p<0.05) LA content and higher dry matter (DM) recovery than the control and P silages. P silage had lower (p<0.05) LA content than the control silage. During aerobic exposure, lactic acid contents decreased gradually in the control and M silages, while that of P and PM silages increased, and the peak values were observed after 9 d. M silage had similar yeast counts with the control silage (> $10^5$ cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (< $10^5$ cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

Evaluation of forage production, feed value, and ensilability of proso millet (Panicum miliaceum L.)

  • Wei, Sheng Nan;Jeong, Eun Chan;Li, Yan Fen;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.38-51
    • /
    • 2022
  • Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid [Sorghum bicolor (L.) Moench] are major summer crops that can be fed as direct-cut or silage. Proso millet is a short-season growing crop with distinct agronomic characteristics that can be productive in marginal lands. However, information is limited about the potential production, feed value, and ensilability of proso millet forage. We evaluated proso millet as a silage crop in comparison with conventional silage crops. Proso millet was sown on June 8 and harvested on September 5 at soft-dough stage. Corn and sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10 at the half milk-line and soft-dough stages, respectively. The fermentation was evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid, its relative feed value was greater than sorghum-sudangrass hybrid. Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate decreased commonly in the ensiling forage crops. The DM loss was greater in proso millet than those in corn and sorghum-sudangrass hybrid. The in vitro dry matter digestibility declined in the forage crops as fermentation progressed. In the early stages of fermentation, pH dropped rapidly, which was stabilized in the later stages. Compared to corn and sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in proso millet. The count of lactic acid bacteria reached the maximum level on day 10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling progressed, the concentrations of lactic acid and acetic acid of the three crops increased and lactic acid proportion became higher in the order of sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter, fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid makes this forage crop an alternative option, particularly in areas where agricultural inputs are limited. However, additional research is needed to evaluate the efficacy of viable strategies such as chemical additives or microbial inoculants to minimize ammonia-nitrogen formation and DM loss during ensiling.