• Title/Summary/Keyword: Corn grain

Search Result 237, Processing Time 0.033 seconds

Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro

  • Yoo, Daekyum;Hamid, Muhammad Mahboob Ali;Kim, Hanbeen;Moon, Joonbeom;Song, Jaeyong;Lee, Seyoung;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.638-647
    • /
    • 2020
  • This study determined the substitution effects of rice for corn as the main grain source in a total mixed ration (TMR). In vitro rumen fermentation characteristics and microbes were assessed using two experimental diets. Diets included 33% dry matter (DM) of either corn (Corn TMR) or rice grains (Rice TMR). In a 48-h in vitro incubation, DM digestibility (IVDMD), neutral detergent fiber degradability (IVNDFD), crude protein digestibility (IVCPD), volatile fatty acids (VFAs), pH and ammonia nitrogen (NH3-N) were estimated. Gas production has been calculated at 3, 6, 12, 24 and 48 h. Our results indicate that the gas production, VFAs, IVDMD, and IVNDFD of Rice TMR were higher than those of Corn TMR (p < 0.05). Ruminal pH and total fungi were significantly higher in Corn TMR (p < 0.05) than in Rice TMR; however, NH3-N and IVCPD were not affected by treatment type. In conclusion, substituting rice for corn at 33% DM in TMR appears to have no negative effects on in vitro rumen fermentation characteristics. Therefore, rice grains are an appropriate alternative energy source in early fattening stage diets of beef cattle.

Growth and Yield Response of Corn Hybrids with Different Canopy Types to Planting Density (옥수수 초형별 재식밀도에 따른 생육 및 수량반응)

  • 이명훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.353-358
    • /
    • 1994
  • Grain yields of errect-leaved corn hybrids were reported to be increased as planting density(PD) increased compared to those of horizontal leaf type hybrids. This trial was conducted to investigate the difference between errect and horizontal-leaved hybrids in response to different PD. Grain yields of both type hybrids were decreased at the highest PD, however, that of horizontal-leaved hybrid, Ga209 ${\times}$ Ki14A, was decreased more than errect-leaved hybrids which indicated varietal difference in response to PD. Responses to PD for days to tasseling, plant height, ear height, and leaf angle were not significant, also, PD ${\times}$ hybrid interactions were not observed. Yield components were decreased as PD increased and there were no PD ${\times}$ hybrid interactions for these characters. Leaf angle was negatively correlated with grain yield and yield components except for kernel weight.

  • PDF

Inheritance of Grain Filling Duration in Corn (옥수수 이면교잡에 의한 등숙기간의 유전 분석)

  • 차선우;박상일;정승근;박승의;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.626-631
    • /
    • 1997
  • This study was conducted to clarify the genetic effect on the duration of grain filling with using the eight corn inbreds. In diallel cross analysis, the grain filling during the lag period showed partial dominance with great additive effects. Inbreds FR14A and A508 showed greater recessive gene effects for lag period, while FR25 showed greater effects of dominant genes. The genetic analysis for the effective filling period(EFP) showed over dominance without additive gene effects. FR25 of 8 inbreds showed greatest effects of dominant genes for EFP, while YUBC208 showed greater recessive gene effects for EFP than other inbreds. The genetic analysis for total grain filling period(TGFP) seemed to be due to partial dominance with greater additive effects. Early inbred line, YUBC208 especially showed greater recessive gene effects for TGFP than others. No. of effective genes related to EFP and TGFP were estimated by at least 5.

  • PDF

Nutritional evaluation of total mixed rations containing rice grain in an in vitro rumen fermentation system

  • Yang, Sung Jae;Kim, Han Been;Moon, Joon Beom;Kim, Na Eun;Park, Joong Kook;Park, Byung Ki;Lee, Se Young;Seo, Jakyeom
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.741-748
    • /
    • 2018
  • This study was conducted to evaluate the nutritional value of total mixed rations (TMR) containing rice grain in an in vitro rumen fermentation system. Three types of grains (corn, wheat, and rice), timothy, and soybean meal (SBM) were used to prepare the experimental TMR: Corn TMR, Wheat TMR, and Rice TMR. The rumen fermentation characteristics of all the experimental TMRs were evaluated by an in vitro anaerobic system using rumen fluid for 24 and 48 h. The digestibility of the nutrients (dry matter [DM], crude protein [CP], and neutral detergent fiber [NDF]), pH, ammonia ($NH_3-N$), and volatile fatty acids (VFA) were determined. Rice TMR showed a higher DM digestibility than that of the Corn TMR at 48 h (p < 0.05). In all treatments, the CP digestibility was more than 80% at 48 h, but no significant differences were observed among the treatments. The NDF digestibility tended to be the lowest in the Wheat TMR (p = 0.06), and the pH tended to be the lowest in the Rice TMR (p = 0.09) among the treatments for the 48 h incubation. The Wheat TMR had the highest $NH_3-N$ concentration among the treatments (p < 0.01). Rice TMR had a lowest total VFA concentration among the treatments (p = 0.05) at 24 h, but no significant differences were observed at 48 h. Based on this in vitro result, it was considered that a rice grain has the potential to replace conventional grain ingredients when the TMR was formulated.

Effects of BMR Variety and Corn Grain (Grounded) Supplement on Silage Quality of Sorghum × Sudan Hybrids (수수 · 수단그라스 사일리지 제조에 있어 BMR 품종과 파옥쇄 첨가 효과)

  • Kwon, Chan Ho;Kim, Eun Joong;Cho, Sangbuem
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • The present study was conducted to evaluate the productivity of $Sorghum{\times}sudangrass$ (SX17) hybrid and BMR (brown mid rib) $Sorghum{\times}sudangrass$ hybrid and silage quality of these forages with corn grain supplementation. The effect of corn grain supplementation on the quality of silages was also investigated. No remarkable differences at growth characteristics and productivities in two hybrids were found. Sugar content, however, in stem of BMR hybrid showed significantly great (p<0.05) and the difference between two hybrids was about $2B^{\circ}$. Ratio of lactic acid in total organic acid in BMR hybrid (82.8%) was significantly greater than the control (SX17 hybrid) (78.5%) (p<0.05). Ratio of butyric acid in total organic acid in SX17 hybrid (18.5%) was significantly greater than BMR hybrid (9.8%) (p<0.05). According to the result of organic acid ratio, it could be assumed that the use of BMR hybrid can improve silage quality. NDF and ADF contents in both SX17 and BMR hybrids were significantly declined with increased corn grain supplementation (p<0.05). Different TDN values in SX17 (56.2) and BMR (57.1) hybrids were detected. However, TDN values of both SX17 and BMR hybrid silages were significantly elevated by increasing the proportion of ground corn (p<0.05).

Response on Canopy Structure, Dry Matter and Yield of Corn and Soydean on Alternative Row Cropping (옥수수와 대두의 단작 및 교호작에서 작물의 초형구조와 건물 및 수량생산성)

  • 홍경식;이호진;유재민
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.357-368
    • /
    • 1987
  • The productivity of cropping systems with corn and soybean were tested in field layouts such as monocultures of each, I-row alternation(l:1), 1-row corn with 2-rows soybean(l:2), and 1-row corn with 3 rows soybean(l : 3). Increasing soybean rows in alternative row croppings modified corn plant short and thick stalk. Decreasing soybean rows induced lodging of soybean plants because of lengthy stem. Although LAI in alternative row croppings increased by 2-8% over monocultures, light transmition into canopy was improved in alternative rows with rearrangement of leaf area and top dry wt.. Top/root ratio of corn plants in alternative rows was decreased as increasing soybean rows. The amount of total nitrogen uptake was increased by 4-22% in alternative row croppings over monocultures. Grain yield of corn plants was increased and that of soybean was decreased as rows of soybean increased in alternative row croppings. Land equivalent ratios were ranged from 0.96 to 1.01, but grain yields, amount of total nitrogen, and dry matter yields were increased by 17-20, 10-25, and 17-20%, respectively, in alternative rows. The 1 : 1 alternative row of corn and soybean was concluded the best cropping system for production of grain and dry matter.

  • PDF

Effect of flaking on the digestibility of corn in ruminants

  • Kang, Hamin;Lee, Mingyung;Jeon, Seoyoung;Lee, Sang Moon;Lee, Ju Hwan;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1018-1033
    • /
    • 2021
  • In this study, we aimed to assess the effect of flaking on the nutrient digestibility of corn grain in ruminants. In this regard, in vitro rumen fermentation, in situ rumen degradability, and in vivo metabolic experiments were performed. The automated gas production technique was used for the in vitro fermentation experiments. Six types of corn flakes with various degrees of gelatinization (32%, 41%, 48%, 66%, 86%, and 89%) were ground and incubated in rumen fluid to measure rumen fermentation characteristics and digestion rate. The in situ degradability of ground corn, whole corn, and corn flakes with 62% and 66% gelatinization was measured by incubation in the rumen of two cannulated Holstein cows. In vivo metabolic experiments were performed using 12 crossbred goats (29.8 ± 4.37 kg) using a 3 × 3 Latin square design. The dietary treatments consisted of ground corn and flaked corn with 48% or 62% gelatinization. In vitro experiments showed that as the degree of gelatinization increased, the digestion rate increased linearly, while the discrete lag time decreased linearly (p < 0.05). The effective rumen dry matter degradability, determined by in situ fermentation, was 37%p lower in corn flakes than ground corn, assuming a passage rate of 6%/h (p < 0.01), and there was no difference between the two flakes. In the in vivo experiment, there was no difference in dry matter intake, average daily gain, feed efficiency, and nitrogen utilization among the treatment groups (p > 0.05); however, the crude fat digestibility was lower for corn flakes than for ground corn (p < 0.05). To summarize, the rate of fermentation of corn flakes increased as the degree of gelatinization increased. However, non-ground corn flakes had lower rumen digestibility and did not improve in vivo apparent nutrient digestibility, compared with ground corn. In contrast to the assumption that flaked corn provides more energy to ruminant animals than ground corn, we conclude that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size of corn flakes.

Performance and Carcass Composition of Growing-finishing Pigs Fed Wheat or Corn-based Diets

  • Han, Yung-Keun;Soita, H.W.;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.704-710
    • /
    • 2005
  • The objective of this experiment was to compare corn and wheat in finishing pig diets in order to determine whether performance, carcass quality, fatty acid composition or fat colour is altered by choice of cereal grain. A total of 126 crossbred pigs were used in this experiment. At the start of the experiment, a portion of the experimental animals were assigned to receive a wheat-based diet formulated using soybean meal as the sole source of supplementary protein. The remainder of the pigs were assigned to a corn-based diet formulated to supply a similar level of lysine (0.65%) and energy (3,300 kcal/kg DE). At two week intervals, a portion of the pigs on the corn-based diet were switched to the wheat-based diet so that a gradient was produced with pigs being fed the corn and wheatbased diets for different proportions of the finishing period ranging from 100% on wheat to 100% on corn. There were no significant differences in the growth rate of pigs fed the two diets (p = 0.834). Pigs fed wheat tended to consume slightly less feed (p = 0.116) and had a significantly improved feed conversion (p = 0.048) compared with pigs fed corn. Choice of cereal did not affect dressing percentage (p = 0.691), carcass value index (p = 0.146), lean yield (p = 0.134), loin fat (p = 0.127) or loin lean (p = 0.217). Fatty acid composition of backfat was unaffected by the cereal grain fed (p>0.05). Total saturated fatty acid content was 33.31% for both corn and wheat fed pigs (p = 0.997) while the polyunsaturated fatty acid content was 12.01% for corn fed pigs and 11.21% for wheat fed pigs (p = 0.257). The polyunsaturated/saturated ratio was 0.36 for pigs fed corn and 0.34 for pigs fed wheat (p = 0.751). Hunter Lab Colour Scores indicated no difference either in the whiteness or yellowness of the fat. In conclusion, wheat can substitute for corn in growingfinishing pig rations without detrimental effects on pig performance. There were no differences in either the fatty acid composition of backfat or in backfat colour indicating that the decision to use wheat vs. corn needs to be made on economic grounds rather than being based on their effects on fat quality.

Chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia

  • Natalia S. Fanelli;Leidy J. Torres-Mendoza;Jerubella J. Abelilla;Hans H. Stein
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.105-115
    • /
    • 2024
  • Objective: A study was conducted to determine the chemical composition of barley and co-products from barley, corn, and wheat produced in South-East Asia or Australia, and to test the hypothesis that production area or production methods can impact the chemical composition of wheat co-products. Methods: Samples included seven barley grains, two malt barley rootlets, one corn gluten feed, one corn gluten meal, one corn bran, eight wheat brans, one wheat mill mix, and four wheat pollards. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract, ash, minerals, starch, and insoluble dietary fiber and soluble dietary fiber. Malt barley rootlets and wheat co-products were also analyzed for sugars. Results: Chemical composition of barley, malt barley rootlets, and corn co-products were in general similar across countries. Wheat pollard had greater (p<0.05) concentrations of tryptophan, magnesium, and potassium compared with wheat bran, whereas wheat bran had greater (p<0.05) concentration of copper than wheat pollard. There were no differences in chemical composition between wheat bran produced in Australia and wheat bran produced in Thailand. Conclusion: Intact barley contains more starch, but fewer AA, than grain co-products. There were only few differences in the composition of wheat bran and wheat pollard, indicating that the two ingredients are similar, but with different names. However, corn gluten meal contains more protein and less fiber than corn bran.

Quality Characteristics of Byeolmijang Prepared by Different Variety of Roasted Grain Powders (볶은 잡곡 종류를 달리하여 제조한 별미장의 품질 특성)

  • Eom, Hyun-Ju;Kwon, Nu Ri;Kang, Hye Jeong;Park, Hye Jin;Kim, So-Young;Kim, Ju-Hyoung
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.2
    • /
    • pp.106-115
    • /
    • 2022
  • The purpose of this study was to examine the quality characteristics of byeolmijang prepared several roasted whole grain powders (oat, brown rice, black soybean, corn) for eight weeks. As the fermentation progressed, the pH decreased from 6.10~6.12 to 4.48~4.92 and the total acidity increased dramatically from 0.41~0.48% to 1.67~2.24%. There were no differences in the moisture content. The content of reducing sugar decreased, in particular, brown rice sample(C) decreased significantly than the other samples during fermentation. In color, L and b-value decreased all samples, whereas a-value showed a tendency to slightly increase. The total cell counts and lactic acid bacteria revealed an increasing tendency during fermentation. In case of the amino-type nitrogen contents, it increased significantly during the fermentation period, especially control sample (A) showed the highest content significantly. The total polyphenol of all samples increased in the fermentation period. ABTS and DPPH radical scavenging activities also increased, especially corn sample (E) had the highest levels. In by electronic tongue analysis, corn sample (E) revealed higher umami and sourness than the control. So, by adding roasted corn powder, it can enhance function and taste of byeolmijang.