• Title/Summary/Keyword: Coriolis Force

Search Result 132, Processing Time 0.021 seconds

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (II) - Effects of Duct Aspect Ratio - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (II) - 덕트 종횡비에 따른 영향 -)

  • Kim Kyung Min;Kim Yun Young;Rhee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.921-928
    • /
    • 2004
  • Measurements of local heat/mass transfer coefficients in rotating two-pass ducts are presented. Ducts of three different aspect ratios (W/H), 0.5, 1.0 and 2.0, are employed with a fixed hydraulic diameter ($D_h$) of 26.7 nm. $90^{\circ}$-rib turbulators are attached on the leading and trailing walls symmetrically. The rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The experimental conditions are the same as those of the previous part of the study. As the rib height-to-duct height ratio (e/H) increases, the core flow is more disturbed and accelerated in the midsections of ribs. Therefore, the obtained data show higher heat/mass transfer in the higher aspect ratio duct. Dean vortices also augment heat/mass transfer in the turn and in the upstream region of the second pass. However, the effect becomes less significant for the higher aspect ratio because the surface area increases in the present geometric condition. The effect of rotation produces heat/mass transfer discrepancy.

Detailed Measurement of Heat/Mass Transfer in a Rotating Equilateral Triangular Channel with Smooth Walls (회전하는 매끈한 정삼각 유로 내 열/물질전달 분포 측정)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.628-634
    • /
    • 2007
  • The present study investigated the heat/mass transfer characteristics in an equilateral triangular channel simulating the leading edge cooling passage in gas turbine blade. Using naphthalene sublimation method and pressure measurement experiments, local mass (heat) transfer and pressure coefficients were obtained. The experiments were conducted with three rotating numbers between 0.0 and 0.1; two channel orientations of $0^{\circ}$ (model A) and $30^{\circ}$ (model B); the fixed Reynolds number of 10,000. The results showed that the channel rotation caused the heat transfer discrepancy between suction and pressure sides. Due to the secondary flow induced by Coriolis force, the high heat transfer appeared on the pressure side. When the channel orientation was $30^{\circ}$ (model B), the secondary flow caused the more uniform heat transfer distribution among leading edge and inner wall on pressure side than that of the model A.

SHAPE OPTIMIZATION OF THE AIRFOIL-GUIDE VANES IN THE TURNING REGION FOR A ROTATING TWO-PASS CHANNEL (곡관부 열전달 성능 강화를 위한 에어포일형 가이드 베인의 형상 최적설계)

  • Moon, M.A.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents the numerical simulation results of heat transfer and friction loss for a rotating two-pass duct with the airfoil-guide vanes in the turning region. The Kriging model is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow field and heat transfer with shear stress transport turbulent model. To improve the heat transfer performance, angle and location of the airfoil-guide vanes have been selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weight factor. The airfoil-guide vanes in the turning region keep the high level of heat transfer while the friction loss has a low value. By comparing the presence or absence of airfoil-guide vanes, it is shown that the airfoil-guide vanes exhibited the best heat transfer performance to improve the blade cooling except the first passage.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

Dynamic Response Analysis of Rotating Composite-VEM Thin-Walled Beams Incorporating Viscoelastic Materials in the Time Domain

  • Na Sung-Soo;Park Jae-Yong;Park Chul-H.;Kwak Moon-K.;Shim Jae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1139-1148
    • /
    • 2006
  • This paper addresses the analytical modeling and dynamic response of the advanced composite rotating blade modeled as thin-walled beams and incorporating viscoelastic material. The blade model incorporates non-classical features such as anisotropy, transverse shear, rotary inertia and includes the centrifugal and coriolis force fields. The dual technology including structural tailoring and passive damping technology is implemented in order to enhance the vibrational characteristics of the blade. Whereas structural tailoring methodology uses the directionality properties of advanced composite materials, the passive material technology exploits the damping capabilities of viscoelastic material (VEM) embedded into the host structure. The VEM layer damping treatment is modeled by using the Golla-Hughes-McTavish (GHM) method, which is employed to account for the frequency-dependent characteristics of the VEM. The case of VEM spread over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergistic implications of both techniques, namely, the tailoring and damping technology on the dynamic response of a rotating thin-walled b ε am exposed to external time-dependent excitations.

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (I) - Cross Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (I) - 엇갈린 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.873-881
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached crossly in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2mm(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (pie) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of cross rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with cross NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with cross NP or PP type ribs.

Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (II) - Parallel Rib Arrangements - (각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (II) - 평행한 요철 배열 -)

  • Kim, Kyung-Min;Park, Suk-Hwan;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.882-890
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached parallel in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2m(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of parallel rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with parallel NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with parallel NN or PN type ribs.

Numerical Experiment on the Ulleung Eddy due to the Variation of the Tsushima Current in the East Sea

  • KIM Soon Young;LEE Jae Chul;LEE Hyong Sun;SHIM Tae Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.1033-1043
    • /
    • 1997
  • In order to understand the generation mechanism of the Ulleung Eddy, we carried out a series of numerical experiments using the nonlinear 11/2 - layer model allowing the inflow of the Tsushima Current. According to our numerical results, the Ulleung Eddy was generated due to the inflow variations of the Tsushima Current. Its inflow through the Korea Strait was deflected to the east due to the Coriolis force and the nonlinear self advection. Thus, an anticyclonic motion was formed at the north of the Korea Strait. The inflow became a coastal boundary current, and finally flowed out model ocean through the eastern exit. When the speed of inflow decreased slowly, the eddy- like motion at the north of the Korea Strait changed into an enclosed anticyclonic eddy of about 200 km in diameter. The Ulleung Eddy became circular shape due to the nonlinear self advection, then changed into elliptical shape in meridional direction because of the blocking effect of the western boundary.

  • PDF

Development of a SAW based Gyroscope (표면탄성파를 이용한 자이로스코프 개발)

  • Oh, Hae-Kwan;Yun, Sung-Jin;Lee, Kee-Keun;Wang, Wen;Yang, Sang-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2009
  • This paper presents a surface acoustic wave(SAW) micro-electro-mechanical-systems(MEMS) interdigital transducer (IDT) gyroscope with 80MHz central frequency on a $128^{\circ}\;YX\;LiNbO_3$, which is consisted of a two-port SAW resonator, metallic dots and dual delay lines for the sensor and reference oscillators. Reason for using two delay line oscillators is to extract the gyroscope effect by comparing the resonant frequencies between two oscillators and to compensate the temperature effect. Based on the coupling of modes(COM) simulation, an 80MHz two ports SAW resonator and dual delay line were fabricated and characterized by the network analyzer. Obtained sensitivity was $109Hz/deg{\cdot}s^{-1}$ in the angular rate range of $0{\sim}1000deg/s$. Good Linearity and superior directivity were observed.