• Title/Summary/Keyword: Core-Journal

Search Result 16,500, Processing Time 0.041 seconds

An Examples Development and Implementation of Core Skill-TLP Package in Patient Management (문제중심학습 개념의 환자관리 Core Skill-TLP 교육교재 개발 및 적용)

  • Lee, Young-Ah
    • The Korean Journal of Emergency Medical Services
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Purpose : The purpose of this study was to develop and apply a Core Skill-TLP(Core Skill-Tutorial, Laboratory, Practicum) package in Patient Management and to effect of core skill-TLP education. Methods : This study was used to developed Patient Management' Core Skill-TLP package throughout 14 steps of Core Skill-TLP package development model. Then, Core Skill-TLP Learning methodology was implemented in first year student in the undergraduate emergency medical technology, and survey was done. Results : 1. Core Skill-TLP package model was presented based on conceptual model of PBL(S-PBL). 2, The student in OSCE did significantly better in clinical patient management core skills performance. 3. As to the satisfaction of Core Skill-TLP package management, student, tutor and self-satisfaction score was 3.21, 3.42, 3.38 respectively. Conclusion : This study was suggested that Core Skill-TLP education would be necessary with well-structured package and achieved advantage of simulation and PBL.

  • PDF

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

Hepatitis C Virus Core Protein Sensitizes Cells to Apoptosis Induced by Anti-Cancer Drug

  • Kang, Mun-Il;Mong Cho;Kim, Sun-Hee;Kang, Chi-Dug;Kim, Dog-Wan
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.90-96
    • /
    • 1999
  • The core protein of the hepatitis C virus (HCV) is a multifunctional protein. The HCV core protein was reported to regulate cellular gene expression and transform primary rat embryo fibroblast cells. However, the role of the core protein in the pathogenesis of HCV-associated liver diseases is not well understood. To investigate the functional role of the core protein in cytophathogenicity, we have constructed stable expression systems of full length or truncated HCV core protein lacking the C-terminal hyderophobic domains and established HepG2 cell clones constitutively expressing the core protein. The full length core protein was localized in the cytoplasm and the C-terminal truncated core protein was localized in the nucleus. HepG2 cells expressing nuclear, truncated core protein showed elevated cell death during cultivation compared to untransfected cells and full length core-expressing cells. In the treatment with bleomycin, both cell clones expressing full length or truncated core protein appeared to be more sensitive to blemoycin than the parental HepG2 cells. These results suggest that the core protein may play a role in HCV pathogenesis promoting apoptotic cell death of infected cells.

  • PDF

Designs of 10 MW Air-core and Iron-core HTS Wind Power Generators

  • Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.545-550
    • /
    • 2015
  • High Temperature Superconducting (HTS) synchronous generators can be designed with either an air-core type or iron-core type. The air-core type has higher efficiency under rated rotating speed and load than the iron-core type because of the iron losses which may produce much heat. However, the total length of HTS wire in the air-core type is longer than the iron-core type because the generated magnetic flux density of the air-core type is low. This paper deals with designs of 10 MW air-core and iron-core HTS wind power generators for wind turbines. Fully air-core, partially iron-core, and fully iron-core HTS generators are designed, and various stator winding methods in the three HTS generators are also considered, such as short-pitch concentrated winding, full-pitch concentrated winding, short-pitch distributed winding, and full-pitch distributed winding. These HTS generators are analyzed using a 3D finite elements method program. The analysis results of the HTS generators are discussed in detail, and the results will be effectively utilized for large-scale wind power generation systems.

A Performance Study of Asymmetric Embedded Multi-Core Processors (비대칭적 임베디드 멀티코어 프로세서의 성능 연구)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.233-238
    • /
    • 2016
  • Recently, the multi-core processor architecture is widely adopted in the embedded processors for enhancing its performance. Multi-core processors are classified either as symmetric or asymmetric. Asymmetric multicore processors are known to score higher performance and more efficient than symmetric multi-core processors. In order to study the performance enhancement of asymmetric multi-core embedded processors over the symmetric ones, the trace-driven simulation has been executed for various asymmetric embedded dual-core, quad-core, octa-core and hexadeca-core processors and compared with the symmetric ones of similar hardware budget using MiBench benchmarks as input.

Mapping between CoreNet and SUMO through WordNet (WordNet을 매개로 한 CoreNet-SUMO의 매핑)

  • Kang, Sin-Jae;Kang, In-Su;Nam, Se-Jin;Choi, Key-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.276-282
    • /
    • 2011
  • CoreNet is a valuable resource to use in the domain of natural language processing including Korean-Chinese-Japanese multilingual text analysis, and translation among natural languages. CoreNet is mapped to SUMO in order to encourage its application in broader fields and enhance its international status as a multilingual lexical semantic network. To do this, indirect and direct mapping methodologies are used. Through the indirect mapping among CoreNet-KorLex-PWN-SUMO, we alleviate the difficulty of translating CoreNet concept terms in Korean into SUMO concepts in English, and maximize recall of SUMO concepts corresponding to the concept of CoreNet.

Distributed Hierarchical Location Placement of Core Nodes in the OCBT Multicast Protocol (OCBT 멀티캐스트 프로토콜에서 core 노드의 분산 계층 위치 결정)

  • 황경호;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.90-95
    • /
    • 2000
  • In the Ordered Core Based Tree(OCBT) protocol, a core location is the most important feature to affect the performance. In this paper, the location placement of multiple level cores is studied. The proposed algorithm isthat each node in the network evaluates a sum of shortest path costs from all the other nodes and the entirenetwork is divided into a hierarchy region to have 3-logical level(Small, Medium, Large). The node to have thelowest cost in each S-Region is decided to be a core node. Then, the core nodes in the each S-Region evaluatea sum of shortest path costs from all the other core nodes in the same M-Region. The core node to have thelowest cost is decided to be the upper level core node. Similarly the highest level core node is decided in theL-Region. The proposed algoritthm is compared with conventional two methods to put the core nodes in thenetwork One is the random method to put the core nodes randomly. The other is the center method to locatethe core node at the nearest node from the center of each S-Region and then to locate the highest level corenode at the nearest core node from the center of the entire network. Extensive simulations are performed in theview of mean tree cost and join latency. Simulation results show that the proposed algorithm has betterperformance than random method or center method.

  • PDF

Expression and Characterization of Hepatitis C Virus Core Proteins: Effects of Single Amino Acid Substitution on Protein Conformation and Subcellular Localization

  • Hwang, Soon-Bong
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.281-286
    • /
    • 1998
  • Hepatitis C virus (HCV) core proteins from two different isolates (HCV-1 and HCV-RH) were expressed in Spotioptera Jrugiperda (Sf9) insect cells. The RH core consisted of two major species of proteins (21 kDa and 19 kDa). On the other hand, the HCV-1 core was approximately 16 kDa in a SDS-PAGE gel. Both core proteins were phosphorylated in vivo on serine residues. Furthermore, the RH core but not HCV-1 core formed dimers, indicating that the protein conformation of the core in these two isolates is dfferent from one another. Immunofluorescence studies showed that the RH core was present in the cytoplasm, whereas the HCV-1 core was localized predominantly to the nucleus in recombinant baculovirus-infected insect cells. Since the major difference between the two isolates is the codon 9 of the core protein, a single amino acid substitution appears to play a major role in the protein conformation and these properties may reflect the different biological functions of core proteins in HCV-infected cells.

  • PDF

Numerical comparison between lattice and honeycomb core by using detailed FEM modelling

  • Giuseppe, Pavano
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.377-400
    • /
    • 2022
  • The aim of this work is a numerical comparison (FEM) between lattice pyramidal-core panel and honeycomb core panel for different core thicknesses. By evaluating the mid-span deflection, the shear rigidity and the shear modulus for both core types and different core thicknesses, it is possible to define which core type has got the best mechanical behaviour for each thickness and the evolution of that behaviour as far as the thickness increases. Since a specific base geometry has been used for the lattice pyramidal core, the comparison gives us the opportunity to investigate the unit cell strut angle giving the higher mechanical properties. The presented work considers a detailed FEM modelling of a standard 3-point bending test (ASTM C393/C393M Standard Practice). Detailed FEM modelling addresses to detailed discretization of cores by means of beam elements for lattice core and shell elements for honeycomb core. Facings, instead, have been modelled by using shell elements for both sandwich panels. On lattice core structure, elements of core and facings are directly connected, to better simulate the additive manufacturing process. Otherwise, an MPC-based constraint between facings and core has been used for honeycomb core structure. Both sandwich panels are entirely built of Aluminium alloy. Prior to compare the two models, the FEM sandwich panel model with lattice pyramidal core needs to be validated with 3-point bending test experimental results, in order to ensure a good reliability of the FEM approach and of the comparison. Furthermore, the analytical validation has been performed according to Allen's theory. The FEM analysis is linear static with an increasing midspan load ranging from 50N up to 500N.

A Study on the Fabrication Process and Melt Infiltration of Salt Core in Squeeze Casting Method (스퀴즈캐스팅용 Salt Core의 제조 및 용탕침투성에 관한 연구)

  • Kim, Ki-Bae;Noh, Sang-Woo;Lee, Ho-In;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.402-410
    • /
    • 1997
  • Developing a salt core for squeeze casting process, two different salt cores(pure salt core and mixed salt core) were fabricated and investigated. Pure salt core was composed of 100% NaCl and mixed salt core was made by mixtures of NaCl with MgO(1%), $Na_2B_4O_7$(2%), and talc(1%) as a binder or a strengthening agent. Salt cores were compacted to various theoretical density, heat treated, and then squeeze-cast with molten Al alloy(AC8A). The compression strength of salt cores were measured and the squeeze-cast products were examined for shape retention, infiltration of molten metal into the cores, and microstructures. The shape of salt core compacted at above 75% of the theoretical density was maintained stably. The higher theoretical density of salt cores gave higher compression strength, and the compression strength of mixed salt core was higher than that of pure salt core. Namely at 90% theoretical density, the compression strength of mixed salt core was $6.3 kg/mm^2$, compared to $4.6 kgmm^2$ for pure salt core. At a squeeze casting pressure of $1000 kg/cm^2$, molten Al alloy was infiltrated into pure salt core of under 85% of the theoretical density. At squeeze casting pressure of $1000 kg/cm^2$, only mixed salt core above 90% of the theoretical density were valid, but the shape of the core was altered in the case of pure salt core at 90% of theoretical density. A key factor for developing a salt core for squeeze casting process was estimated as the ultimate compressive strength of salt core.

  • PDF