• Title/Summary/Keyword: Core-A

Search Result 16,945, Processing Time 0.047 seconds

Multi-material core as self-centering mechanism for buildings incorporating BRBs

  • Hoveidae, Nader
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.589-599
    • /
    • 2019
  • Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be attributed to low post-yield stiffness of core member in a BRB. This paper introduces a multi-core buckling restrained brace. The multi-core term arises from the use of more than one core component with different steel materials, including high-performance steel (HPS-70W) and stainless steel (304L) with high strain hardening properties. Nonlinear dynamic time history analyses were conducted on variety of diagonally braced frames with different heights, in order to compare the seismic performance of regular and multi-core buckling restrained braced frames. The results exhibited that the proposed multi-core buckling restrained braces reduce inter-story and especially residual drift demands in BRBFs. In addition, the results of seismic fragility analysis designated that the probability of exceedance of residual drifts in multi-core buckling restrained braced frames is significantly lower in comparison to standard BRBFs.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H.;Tan, Chun-Yean;Yahya, Mohd Yazid;Wahit, Mat Uzir
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.105-117
    • /
    • 2022
  • Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.

The Effect of Core Stabilization Exercise on Dynamic Balance and Trunk Horizontal Rotation in Adult Men (코어 운동이 성인 남성의 동적 균형과 몸통의 수평 회전에 미치는 효과)

  • Gyeong Hyeon, Jeong;Byounghee, Lee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.4
    • /
    • pp.96-111
    • /
    • 2022
  • Background: This study aims to evaluate the effect of core stabilization exercise on the dynamic balance and horizontal rotation of the trunk in young adult men. Through this study, it is expected that various core stabilization exercises will prevent and treat musculoskeletal disease. Design: Randomized Controlled Trial. Methods: The study subjects were recruited from young adult men in their 20s and 30s living in Seoul, and after the randomized controlled trial, it was divided into an experimental group training core stabilization exercise(n=15) and a control group(n=15). The evaluation methods of this study were modified Star Excursion Balance Test(mSEBT), Functional Reach Test(FRT), and Trunk Rotation Test(TRT). The experimental group performed three sets of crunches and deadbug exercises twice a week for eight weeks, and the control group did not perform any exercises similar to core stabilization exercise during the experimental period. Results: The result of the experiment, the experimental group showed significant improvement in mSEBT(p<.05), FRT(p<.05) and TRT(p<.05). Conclusion: In conclusion, core stabilization exercises improved dynamic balance and horizontal rotation of the trunk. As a result of this study, core stabilization exercise can prevent and treat musculoskeletal diseases even in healthy people.

A Study on the Preservation Policy Framework of Data Repository: Focusing on CoreTrustSeal Certification (데이터 리포지토리의 보존 정책 프레임워크에 관한 연구 - CoreTrustSeal 인증을 중심으로 -)

  • Hea Lim Rhee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.4
    • /
    • pp.119-138
    • /
    • 2023
  • This study endeavors to delineate the essential components of digital preservation policies requisite for data repositories. Drawing from an examination of digital preservation policies from data repositories accredited by CoreTrustSeal in 2023, this study unveils the pivotal components intrinsic to a digital preservation policy framework, subsequently elucidating the content each component encompasses. The proffered framework is anticipated to serve as a foundational reference for institutions aiming to craft their digital preservation policies, transcending the confines of those solely pursuing CoreTrustSeal certification, to encompass both domestic and international institutions irrespective of their intent to seek CoreTrustSeal certification.

Preparation and Application of Microcapsule - Preparation and Properties of Suspension-Polymerized Poly(vinyl alcohol) Microsphere with Core-Shell Structure - (마이크로캡슐의 제조와 응용 - 분산중합에 의한 core/shell 구조를 지닌 Poly(vinyl alcohol) Microsphere의 제조와 특성 -)

  • 김혜인;김효정;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2003
  • Poly(ethylene-co-vinylacetate) (EVA) microspheres were prepared by a thermally induced phase separation. Poly(vinyl Alcohol) (EVAL) microsphere with Core-Shell Structure were synthesized by a saponification on sheath of EVA microspheres. The size of EVA core/EVAL shell microsphere was decreased from $4.09\mu{m}\;to\;2.55\mu{m}$ by partial saponification of $NaOH/Na_2SO_4$/methanol(2 : 1 : 1 by weight) at $60^\circ{C}$ for 4h to produce a saponified surface layer of about 60% of original radius. In this process, the surface layer of EVAL microsphere was dissolved partially and morphology of surface was not showed. Add-on of cotton and silk printed with EVA core/EVAL shell microsphere was increased and that of printed PET was decreased. In case of EVA core/EVAL shell microsphere, Hand of cotton and silk printed was flexible and fullness.

Design and Analysis of A Rectangular Type Core for A Contactless Power Transmission system (비접촉 진력전송 시스템을 위한 'ㅁㅓ'형 코어 설계 및 분석)

  • Jin, Kang-Hwan;Kim, Ji-Min;Kim, Soo-Hong;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • In the transformer that is used for the contactless power transmission system, the primary and secondary sides are separated structurally unlike general transformers. When the contactless transformer is built, it forms relatively bigger air gap than the general transformer. Thus it is difficult to transfer energy from the primary side input to the secondary side output with high power efficiently because of low coupling coefficient. This paper proposes a contactless transformer using the rectangular type core that maintains high coupling coefficient even when it has relatively large air gap. The performance characteristics of the proposed transformer are compared with the transformer using general EE core to the air gap variation. The proposed contactless system using rectangular type core and dc-dc full bridge converter, and the system using EE core type and dc-dc full bridge converter are respectively implemented and their performance characteristics are verified by the simulation and experiment.

Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core (세라믹 용융코어의 미세조직과 기계적 특성)

  • Lee, Jun-Ho;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.4
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.

The Study on Intensity Index of Core Competency and Evaluation of Maturity Index of IT Outsourcing (기업의 핵심역량 집중도와 IT 아웃소싱 성숙도 평가에 관한 연구)

  • Lee, Hak-Sun;Kim, Jung-Po;Oh, Sung-Ho;Nam, Ki-Chan
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.2
    • /
    • pp.45-61
    • /
    • 2005
  • Recently, increasing attention has been paid to IT outsourcing and core competency of the corporation. Many companies are expected to focus on core competency rather than reduce IT cost from IT Outsourcing. But, by this time there are no a framework for evaluating intensity of core competency and maturity of IT outsourcing capability. This paper is conducted to provide a framework for evaluating intensity of core competency and maturity of IT outsourcing capability. This paper is to verify if the company's core competency and IT outsourcing capability have a significant influence on each other.

  • PDF

Comparison Between Direct- and Indirect-Cooling Core Catchers (직접냉각방식 및 간접냉각방식 Core Catcher의 성능비교)

  • Suh, Jung-Soo;Lee, Jong-Ho;Bae, Byung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1043-1047
    • /
    • 2012
  • The European nuclear design requirements, which should be satisfied by nuclear reactors in Europe, usually recommend a so-called core catcher, which is a molten core ex-vessel cooling facility, to manage a severe accident at a nuclear reactor. Two different types of core catcher concepts are compared to determine their abilities to manage severe accidents and cool core melts. The study reveals that direct cooling is better for cooling capacity and is convenient to construct, while indirect cooing is better for the management of a severe accident.