• Title/Summary/Keyword: Core shell structure

Search Result 258, Processing Time 0.029 seconds

Synthesis of Inorganic/Organic Core-Shell Polymer Using Polyoxyethylene Alkylether Sulfate as a Surfactant (Polyoxyethylene Alkylether Sulfate 계면활성제를 사용한 무기/유기 코어-셀의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.93-97
    • /
    • 2010
  • Silicone dioxide absorbed polyoxyethylene alkylether sulfate (EU-S75D) surfactant was prepared. The core-shell composite of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate(KPS) as an initiator. We studied the effect of surfactants on the core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant lauryl sulfate(SLS). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer(TGA) and morphology of latex by scanning electron microscope(SEM).

A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA ($CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발)

  • Seul, Soo-Duk;Lee, Sun Ryong;Lee, Nae-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

Formation of Core-Shell Structure in BaTiO3 Grains

  • Kim, Chang-Hoon;Park, Kum-Jin;Yoon, Yeo-Joo;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.123-130
    • /
    • 2009
  • To understand the formation of core-shell structure in $BaTiO_3$ (BT) grains in multilayer ceramic capacitors, specimens were prepared with BT powders mixed with Y and Mg, and their microstructures were investigated with scanning electron microscopy, x-ray diffractometry, and transmission electron microscopy. Microstructural investigation showed that Y dissolved easily in BT lattice to a certain depth inside of the grain, whereas Mg tended to stay at grain boundaries rather than become incorporated into BT. It was considered that in case of Y and Mg addition in a proper ratio, Y could play a dominant role in the formation of shell leading to a slight dissolution of Mg in the shell. Next, the effects of ball-milling conditions on the core-shell formation were studied. As the ball-milling time increased, the milled powders did not show a significant change in size distribution but rather an increase of residual strain, which was attributed to the milling damage. The increase in milling damage facilitated the shell formation, leading to the increased shell portion in the core-shell grain.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

Manufacture of Core-Shell Composite Polymer Materials for Nonwoven binder (부직포 바인더용 Core-Shell 복합소재의 제조)

  • Lee, Sun Ryong;Lim, Jae Keel;Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.27-36
    • /
    • 2002
  • The organic/organic core-shell composite polymer for nonwomen binder were synthesized by stage polymerization of methyl methacrylate and styrene with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. We study the effect of initiator concentration, $0.79{\times}10^{-3}{\sim}3.16{\times}10^{-3}mol/L$ for core polymer, $2.0{\times}10^{-4}{\sim}8.0{\times}10^{-4}mol/L$ for shell polymer, sulfactant concentration, $1.45{\times}10^{-5}{\sim}4.15{\times}10^{-5}mol/L$ for core polymer, $0.73{\times}10^{-5}{\sim}2.91{\times}10^{-5}mol/L$ for shell polymer on core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Emulsion stability was major test method, particle size and particle size distribution were measured using particle size analyzer and the morphology of the core-shell composite polymer was determined using transmission electron microscope, glass temperature was also measured using differential scanning calorimeter.

  • PDF

Synthesis of Inorganic/Organic Core-Shell Polymer (무기/유기 Core-Shell 에멀젼 고분자의 합성)

  • Kim, Nam-Seok;Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.265-272
    • /
    • 2002
  • $CaCO_{3}$ absorbed sodium lauryl sulfate (SLS) surfactant was prepared, Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using styrene(St) as a shell monomer and potasium persulfate (KPS) as an initiator, We found that when $CaCO_{3}$; core prepared by adding 2,0 wt% SLS, $CaCO_{3}$ core/PSt shell polymerization was carried out on the surface of $CaCO_{3}$ particle without forming the new PSt particle during St shell polymerization in the inorganic/organic core-shell polymer preparation, The structure of core-shell polymer were investigated by measuring the degree of decomposition of $CaCO_{3}$ using HCl solution, thermal decomposition of polymer composite using thermogravimetric analyzer and morphology by scanning electron microscope.

Synthesis on the Core-Shell Polymer of Silicone Dioxide/Styrene Using Sodium Dioctyl Sulfosuccinate (EU-DO133L) as a Surfactant (계면활성제 Sodium Dioctyl Sulfosuccinate (EU-DO133L)을 사용한 이산화규소/스티렌의 코어-셀 고분자의 합성)

  • Kim, Duck-Sool;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Core-Shell polymers of silicone dioxide-styrene system were prepared by sequential emulsion polymerization. In inorganic/organic Core-Shell composite particle polymerization, silicone dioxide adsorbed by surfactant sodium dioctyl sulfosuccinate (EU-DO133L) was prepared initially and then core silicone dioxide was encapsulated emulsion by sequential emulsion polymerization using styrene at the addition of potassium persulfate (KPS) as an initiator. We found that $SiO_2$ core shell of $SiO_2$/styrene structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration sodium dioctyl sulfosuccinate (EU-DO133L) was 0.5~2.0g. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

Preparation of Styrene-Ethyl acylate Core-shell Structured Detection Materials for aMeasurement of the Wall Contamination by Emulsion Polymerization

  • Hwang, Ho-Sang;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.84-85
    • /
    • 2009
  • New approaches for detecting, preventing and remedying environmental damage are important for protection of the environment. Procedures must be developed and implemented to reduce the amount of waste produced in chemical processes, to detect the presence and/or concentration of contaminants and decontaminate fouled environments. Contamination can be classified into three general types: airborne, surface and structural. The most dangerous type is airborne contamination, because of the opportunity for inhalation and ingestion. The second most dangerous type is surface contamination. Surface contamination can be transferred to workers by casual contact and if disturbed can easily be made airborne. The decontamination of the surface in the nuclear facilities has been widely studied with particular emphasis on small and large surfaces. The amount of wastes being produced during decommissioning of nuclear facilities is much higher than the total wastes cumulated during operation. And, the process of decommissioning has a strong possibility of personal's exposure and emission to environment of the radioactive contaminants, requiring through monitoring and estimation of radiation and radioactivity. So, it is important to monitor the radioactive contamination level of the nuclear facilities for the determination of the decontamination method, the establishment of the decommissioning planning, and the worker's safety. But it is very difficult to measure the surface contamination of the floor and wall in the highly contaminated facilities. In this study, the poly(styrene-ethyl acrylate) [poly(St-EA)] core-shell composite polymer for measurement of the radioactive contamination was synthesized by the method of emulsion polymerization. The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS)as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SOS) as an emulsifier using ammonium persulfate (APS) as an initiator. The polymer was made by impregnating organic scintillators, 2,5-diphenyloxazole (PPO) and 1,4-bis[5-phenyl-2-oxazol]benzene (POPOP). Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by IT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Radiation pollution level the detection about under using examined the beta rays. The morphology of the poly(St-EA) composite polymer synthesized by the method of emulsion polymerization was a core-shell structure, as shown in Fig. 1. Core-shell materials consist of a core structural domain covered by a shell domain. Clearly, the entire surface of PS core was covered by PEA. The inner region was a PS core and the outer region was a PEA shell. The particle size distribution showed similar in the range 350-360 nm.

  • PDF

h Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization (단계중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구)

  • 이선룡;설수덕
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.617-624
    • /
    • 2001
  • The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, We study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.

  • PDF

Preset State of Thermoreversible Poly(vinylidene fluoride)/propylene Carbonate Gel System: 1. Core-Shell Model (열가역적인 Poly(vinylidene fluoride)/Propylene Carbonate(PC) 겔 시스템에서의 Pregea 상태 : 1. Core-Shell 모델)

  • 박일현
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.227-236
    • /
    • 2002
  • The structure of pregel state in thermoreversible poly(vinylidene fluoride)(PVDF) /propylene carbonate(PC) system was investigated by laser light scattering. It was found that the PVDF chain did not exist as a separate chain even in a very dilute concentration(i.e. 100 times more dilute than the gel formation concentration) but as a large spherical aggregate with the radius of gyration $R_G$, of 232 nm and the effective hydrodynamic radius $R_H$= of 407 nm at $40^{\circ}C$. Based upon experimental results such as $R_H/R_G$=ratio of 1.75 and the pattern of scattering intensity with a minimum, a core-shell type sphere model was suggested as a structure of the aggregate. According to this model, the radius of core part was estimated as 215 nm, the shell thickness as 192 nm, and the ratio of monomer density of the shell part to that of the core part as about 0.075.