열가역적인 Poly(vinylidene fluoride)/Propylene Carbonate(PC) 겔 시스템에서의 Pregea 상태 : 1. Core-Shell 모델

Preset State of Thermoreversible Poly(vinylidene fluoride)/propylene Carbonate Gel System: 1. Core-Shell Model

  • 박일현 (금오공과대학교 고분자공학과)
  • 발행 : 2002.03.01

초록

열가역적인 polyvinylidene fluoride (PVDF)/propylene carbonate (PC) 의 매우 묽은 농도에서의 pregel 상태의 구조를 레이저 광산란법으로 조사한 결과 겔형성농도의 100배 이상 묽은 농도 조건에서도 PVDF 사슬은 낱개로 용해되어 있는 것이 아니라 많은 PVDF 사슬들이 응집된 거대한 구형 상태로 존재하며 이때의 응집체의 분산도는 상당히 낮으며 용액온도 $40^{\circ}C$에서 회전반경$R_G$ 는 232 nm, 동력학적 반경 $R_H$는 407 nm로 측정되었다. $R_H/R_G$=1.75의 커다란 비 값, 극소점을 갖는 정적 광산란 패턴 등으로부터 예측하건대 이 응집체의 구조는 core-shell 형태의 구형이며, 이때 내부 core의 반지름은 대략 215 nm, 외부 shell의 두께는 192 nm가 되며, shell 부분에서의 PVDF의 단량체 밀도는 core 부분의 단량체 밀도의 약 75% 수준에 머무르는 것으로 판명되었다.

The structure of pregel state in thermoreversible poly(vinylidene fluoride)(PVDF) /propylene carbonate(PC) system was investigated by laser light scattering. It was found that the PVDF chain did not exist as a separate chain even in a very dilute concentration(i.e. 100 times more dilute than the gel formation concentration) but as a large spherical aggregate with the radius of gyration $R_G$, of 232 nm and the effective hydrodynamic radius $R_H$= of 407 nm at $40^{\circ}C$. Based upon experimental results such as $R_H/R_G$=ratio of 1.75 and the pattern of scattering intensity with a minimum, a core-shell type sphere model was suggested as a structure of the aggregate. According to this model, the radius of core part was estimated as 215 nm, the shell thickness as 192 nm, and the ratio of monomer density of the shell part to that of the core part as about 0.075.

키워드

참고문헌

  1. Encyclopedia of Polymer Science and Engineering v.17 J. E. Dohany;J. S. Humphrey;H. F. Mark(et al.)(ed.)
  2. The Application of Ferroelectric Polymers T. T. Wang;J. M. Herbert;A. M. Glass
  3. Ferroelectric Polymers H. S. Nalwa
  4. Polymer v.34 J. W. Cho;H. Y. Song;S. Y. Kim https://doi.org/10.1016/0032-3861(93)90224-X
  5. Thermoreversible Gelation of Polymers and Biopolymers J.-M. Guenet
  6. Macromolecules v.28 S. Mal;P. Maiti;A. K. Nandi https://doi.org/10.1021/ma00111a034
  7. Macromolecules v.31 A. K. Dikshit;A. K. Nandi https://doi.org/10.1021/ma980764n
  8. Polymer v.39 S. Mal;A. K. Nandi https://doi.org/10.1016/S0032-3861(97)10185-9
  9. Langmuir v.14 S. Mal;A. K. Nandi https://doi.org/10.1021/la9709150
  10. Macromol. Chem. Phys. v.200 S. Mal;A. K. Nandi https://doi.org/10.1002/(SICI)1521-3935(19990501)200:5<1074::AID-MACP1074>3.0.CO;2-M
  11. Proceedings of 99 Pusan- Kyeongnam/Kyushu-Seibu Joint Symposium on High Polymers and Fiber B. S. Kim;K. W. Song;I. H. Park;J. O. Lee
  12. Abstracts of The Polymer Society of Korea v.26 S. T. Baek;R. Lee;B. S. Kim;K. W. Song;I. H. Park;J. W. Lee
  13. Polymers and Neutron Scattering J. S. Higgins;H. C. Benoit
  14. Dynamic Light Scattering B. J. Berne;R. Pecora
  15. Methods of X-ray and Neutron Scattering in Polymer Science R. J. Roe
  16. Polymers and Neutron Scattering J. S. Higgins;H. Benoit
  17. Dynamic Light Scattering: The Method and Some Application M. Schmidt;W. Brown(ed.)
  18. Master Thesis J. H. Cha
  19. J. Colloid Interface Sci. v.105 B. Chu;C. Wu;J. R. Ford https://doi.org/10.1016/0021-9797(85)90321-2
  20. Dynamic Light Scattering: The Method and Some Application G. Fytas;A. Patkowski;W. Brown(ed.)
  21. Macromolecules v.24 S. W. Park;T. Chang;I. H. Park https://doi.org/10.1021/ma00020a038
  22. Dynamic Light Scattering: The Method and Some Application P. S. Russo;W. Brown(ed.)
  23. J. Chem. Phys. v.102 J. H. van Zanten https://doi.org/10.1063/1.468860
  24. J. Polym. Sci. v.B11 K. Nakagawa;Y. Ishida
  25. J. Polym. Sci. v.B14 G. J. Welch;R. L. Miller
  26. Polymer Data Handbook J. E. Mark