• Title/Summary/Keyword: Core melting

Search Result 106, Processing Time 0.022 seconds

Dyeing and Heat Setting Properties of Low Melting PET Fiber (저온융착사를 이용한 섬유의 염색성 및 열처리 특성)

  • Hwang, Se-Jeong;Choi, Hyun-Seuk;Kim, Dong-Kwon;Chong, In-Sik;Kim, Sung-Gun
    • Textile Coloration and Finishing
    • /
    • v.21 no.3
    • /
    • pp.37-42
    • /
    • 2009
  • The low melting PET yarn has sheath/core structure: sheath portion consists of low melting point PET and core portion is regular PET. Dyeing properties of fabric made from low melting PET yarn were investigated at different dyeing temperatures. It was found that the exhaustion yield on the low melting PET fabric was higher than on regular PET fabric. The total K/S value of the dyed low melting PET fabric increased as heat setting temperature increased above $150^{\circ}C$ because the sheath portion of the low melting yarn melted. Although fastness to light of the low melting PET fabric was similar to regular PET fabric, fastness to washing was inferior to regular PET fabric by 1 grade.

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

Study of contact melting of plate bundles by molten material in severe reactor accidents

  • J.J. Ma;W.Z. Chen;H.G. Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4266-4273
    • /
    • 2023
  • In a severe reactor accident, a crust will form on the surface of the molten material during the core melting process. The crust will have a contact melting with the internal components of the reactor. In this paper, the contact melting process of the molten material on the austenitic stainless steel plate bundles is studied. The contact melting model of parabolic molten material on the plate bundles is proposed, and the rule and main effect factors of the contact melting are analyzed. The results show that the melting velocity is proportional to the slope of the paraboloid, the heat flux and the distance between two plates D. The influence of melt gravity and the plate width on melting velocity is negligible. The thickness of the molten liquid film is proportional to the heat flux and plate width, and it is inversely proportional to the gravity. With the increase of D, the liquid film thickness decreases at first and then increases gradually. The liquid film thickness has a minimum against D. When the width of the plate is small, the width of the plate is the main factor affecting the thickness of the liquid film. The parameters are coupled with each other. In a severe reactor accident, the wider internal components of reactor, which can increase the thickness of the melting liquid film and reduce the net input heat flux from the molten material to the components, are the effective measures to delay the melting process.

Heat Processing and Dyeing Properties of Fabrics by Using Composite Fancy Yarn Containing Low Melting PET Yarn (저온융착 폴리에스테르사 함유 팬시사 직물의 열처리 특성 및 염색성)

  • Sung, Woo Kyung
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1024-1031
    • /
    • 2012
  • The thermal bonding PET fabrics were produced through high temperature steaming (HTS) of low melting PET yarn as warp and composite fancy yarn containing low melting PET yarn as weft. The low melting PET yarn of sheath-core structure consisted of a regular PET in core portion and low melting PET in sheath portion. The composite fancy yarn consisted of regular PET yarn as inner part and effect part and low melting PET yarn as binding part. This study was carried out to investigate the melting behavior of thermal bonded PET fabric, the effect of HTS on the thermal bonding, mechanical properties, and dyeing properties. The melting peak of low melting PET yarn showed two melting peaks caused by sheath-core structure. Almost the entire thermal bonding of the fancy PET fabrics containing low melting PET yarn has formed at $200^{\circ}C{\times}3min$ of HTS. The tensile strength in warp and weft direction of the fancy PET fabrics slightly decreased as temperature of HTS increased. The total K/S value of the fancy PET fabrics decreased slightly to $180^{\circ}C{\times}3min$ of HTS, while increased slightly above $200^{\circ}C{\times}3min$ of HTS. The changes in the hue angle ($H^{\circ}$) of the thermal bonded fancy PET fabrics dyed with disperse dyes hardly ever happened.

The Study of Encapsulation Technique for Microcapsule Using Core Materials with Low Melting Point (저융점을 가진 Core 물질을 이용한 내구성 Microcapsule 제조 기술)

  • Noh, Kun-Ae;Gang, Eu-Gene;Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-284
    • /
    • 2001
  • A series of microcapsule were synthesized by using several PCM(Phase Change Material) as a core material and gelatin/arabic gum, melamine/formaldehyde as a shell material. Coacervation technique and in situ polymerization were adopted in synthesizing microcapsules. In the microencapsulation by coacervation, tetradecane and octadecane were used as core materials. In the microencapsulation by situ polymerization tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane were used as core material. The synthesized microcapsule was examined to observe the shape of the microcapsule. The particle size analysis was performed by particle size analyzer. The thermal properties(e.g. melting point, heat of melting, crystallization temperature, heat of crystallization, differences between melting point and crystallization temperature) were obtained by DSC(Differential Scanning Calorimeter). The stirring rate effect was investigated during the microencapsulation. It was found that with increasing the stirring rate much smaller microcapule was produced. However, this did not necessarily lead to formation of spherical microcapsule.

An Analysis of Gravity-Assisted Melting of Subcooled Solid Filled Inside a Spherical Capsule (구형용기내 고상의 하강운동을 고려한 융해과정의 해석)

  • 서정세;김찬중;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2601-2610
    • /
    • 1993
  • A numerical study on the melting process inside an isothermal spherical capsule is made. It is assumed that the phase change medium of its solid phase is heavier than the liquid phase and therefore the unmelted solid core is continuously moving downward on account of gravity forces. Such a gravity-assisted melting is commonly characterized by the existence of a thin liquid film below the solid core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow and heat transfer characteristics associated with the gravity-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved without subdivision of the solution domains. For example, the liquid film region and the upper melted region are treated here as one domain and thus obviating laborious efforts to couple them. Numerical results are obtained by varying the Rayleigh numbers and the degree of subcooling. For the range of parameters examined, the presence of subcooling was found to impede the melting rate. The dropping velocity of the unmelted solid core was observed to affect the natural convection in the liquid significantly. When compared with the available experimental data, much improved prediction was achieved.

Preparation of Thermal Bonding Fabric by using-low-melting-point Bicomponent Filament Yarn - Head tie - (저융점 복합사를 이용한 열융착 직물의 제조(I) - 헤드타이를 중심으로 -)

  • Ji, Myeong-Kyo;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.11 no.3
    • /
    • pp.474-480
    • /
    • 2009
  • The purpose of this study is to prepare the hardness of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type were composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter from 120 to $195^{\circ}C$ temperature range for 60 seconds. In this study, we investigated the physical properties and melting behavior of PET fiber and the effect of the temperature of the pin tenter on the thermal bonding, mechanical properties. Melting peak of warp showed the thermal behavior of general PET fiber. However, melting peak of weft fiber(bicomponent fiber) showed the double melting peak. The thermal bonding of the PET fabric formed at about temperature of lower melting peak. The optimum thermal bonding conditions for PET fabrics was applied at $190{\sim}195^{\circ}C$ for 60seconds by pin tenter. On the other hand, the tensile strength of the PET fabric decreased with an increasing temperature of thermal bonding.

Dyeability of Low-melting Hybrid Polyester at Low Temperature (저융점 폴리에스테르 복합사의 저온 염색성)

  • Hwang, Ji-Hyun;Kim, Chang-Nam;Ma, Jin-Suk;Oh, Hae-Sun;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2012
  • Jacquard floor covering could be prepared from low-melting/regular sheath-core hybrid polyester, where the fiber is dyed in yarn state. With regard that the expected high shrinkage of the hybrid polyester in water makes problems in yarn dyeing, low-temperature dyeing properties of the hybrid polyester were studied. The rate of shrinkage of low-melting hybrid polyester exceeds 9% in hot water above $90^{\circ}C$, at such condition, cheese yarn dyeing is very difficult. Although disperse dyes exhaust in a relatively high speed on low-melting hybrid polyester, diffusion of these dyes to the core regular polyester was extremely slow under $90^{\circ}C$. Foron Blue E-BL 150, an anthraquinone E-type disperse dye, showed appreciable diffusion after 48hrs dyeing at $90^{\circ}C$. The fastness to rubbing and drycleaning were improved by one grade after reduction cleaning.

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.

Effect of Applying Pressure of High Pressure Diecasting Process Using Salt core (용탕단조 시 저온염코어 적용 가압력의 영향)

  • Lee, Jun-Ho;Moon, J.H.;Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.136-140
    • /
    • 2008
  • A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy, was introduced to produced an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The main goal of this study is to develop a new integrated net-shape forming technology using fusible core of lower melting temperature than that of a casting alloy. This integrated net-shape forming technology would be very successful and cost-effective for producing the integrated products having a complicated inner shape or requiring under-cut. The technology for measuring and evaluating a various property of fusible core such as a thermal conductivity and thermal expansion coefficient, melting temperature was established. Also, the work space can be cleaned without a pollution inducing products.