• Title/Summary/Keyword: Core Radius

Search Result 145, Processing Time 0.027 seconds

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

Stress Redistributions due to the Shape of Sliding Core and Applied Load Core in the Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 형상과 하중모드에 따른 응력 재분포)

  • Kang Bong-Su;Kim Cheol-Woong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.515-516
    • /
    • 2006
  • The goal of total disc replacement is to restore pain-free mobility to a diseased functional spinal unit, by replacing the degenerated disc with a mobile bearing prosthesis. SB Charite III is named commercial product as the Artificial Intervertebral Disc (AID). SB Charite III consists of sliding core and endplate made by Ultra-high Molecular Weight Polyethylene (UHMWPE) and cobalt chrome alloy, respectively. To evaluate the effect of von-Mises stress in AID, and three-dimensional finite element model of AID analysis was preformed for four different loading types of sliding core. Consequently, endplate was compared with a compressive preload at 400N and flexion moment at $3{\sim}9Nm4. Therefore, this research has obtained result that von-Mises stress of sliding core in AID disc by radius curvature.

  • PDF

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.

Preset State of Thermoreversible Poly(vinylidene fluoride)/propylene Carbonate Gel System: 1. Core-Shell Model (열가역적인 Poly(vinylidene fluoride)/Propylene Carbonate(PC) 겔 시스템에서의 Pregea 상태 : 1. Core-Shell 모델)

  • 박일현
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.227-236
    • /
    • 2002
  • The structure of pregel state in thermoreversible poly(vinylidene fluoride)(PVDF) /propylene carbonate(PC) system was investigated by laser light scattering. It was found that the PVDF chain did not exist as a separate chain even in a very dilute concentration(i.e. 100 times more dilute than the gel formation concentration) but as a large spherical aggregate with the radius of gyration $R_G$, of 232 nm and the effective hydrodynamic radius $R_H$= of 407 nm at $40^{\circ}C$. Based upon experimental results such as $R_H/R_G$=ratio of 1.75 and the pattern of scattering intensity with a minimum, a core-shell type sphere model was suggested as a structure of the aggregate. According to this model, the radius of core part was estimated as 215 nm, the shell thickness as 192 nm, and the ratio of monomer density of the shell part to that of the core part as about 0.075.

Rotational loss assessment of flywheel energy storage system by Motor/Generator core (전동/발전기 코어에 의한 초전도 플라이휠 에너지 저장장치의 회전손실 특성 평가)

  • Lee, Jeong-Phil;Han, Young-Hee;Jung, Se-Yong;Han, Sang-Chul;Jeong, Nyeon-Ho;Sung, Tae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1775-1781
    • /
    • 2007
  • In this paper, the rotational loss of the superconductor flywheel energy storage system (SFES) by motor/generator stator core was assessed. To do this, the vertical axial type SFES with journal type superconductor bearing was manufactured. To quantitatively assess the rotational loss by the stator core, the rotational losses by superconductor bearing and the degree of a vacuum were measured. In case of variation of the inner radius and outer radius of the stator core, the rotational losses were measured. From the experimental results, It is confirmed that the rotational loss can be reduced by means of the optimal stator core design.

Friction Factors for Flow in Concentric Annuli with Rib-Roughened Wall (돌출형 거칠기벽이 있는 동심환형관의 유동에 대한 마찰계수)

  • Ahn, Soo Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.587-592
    • /
    • 1999
  • The combined effects of radius ratio and roughness pitch ratio on the turbulent fluid flow characteristics of the fully developed flow in the annullar tubes with rib-roughened core walls were determined for Reynolds number ranging from 12,000 to 66,000. To understand the underlying physical phenomena responsible for friction factor enhancement, measurements of velocity profiles and zero shear stress and maximum velocity positions were combined to propose the friction factor correlation. Friction factors were found to be a function of the roughness pitch ratio and radius ratio.

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.

Spray modelization of air-assisted coaxial atomizer (이류체 분사노즐의 분무예측 모델)

  • Yun, Seok-Ju;Ledoux, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1948-1958
    • /
    • 1996
  • Experimental and theoretical studies on the air-assist coaxial atomizer have been continuously carried out for a long time. But now the importance of the theoretical study is tending to increase as with the development of computer. This study is concerned to the spray modelization, especially, the instability of the liquid jet surrounded by the air stream which flows with high velocity. To study the phenomena of the break up, we used the linear theory based on the classical Kelvin-Helmholtz theory for capillary wave at a simple interface and we investigated the variation of liquid core radius. As a result, we obtained that the drop diameter and the variation of the liquid core radius predicted by using our model are reasonable.

New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores

  • Fard, Keramat Malekzadeh;Livani, Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.719-742
    • /
    • 2015
  • This paper dealt the free vibration analysis of thick truncated conical composite sandwich shells with transversely flexible cores and simply supported boundary conditions based on a new improved and enhanced higher order sandwich shell theory. Geometries were used in the present work for the consideration of different radii curvatures of the face sheets and the core was unique. The coupled governing partial differential equations were derived by the Hamilton's principle. The in-plane circumferential and axial stresses of the core were considered in the new enhanced model. The first order shear deformation theory was used for the inner and outer composite face sheets and for the core, a polynomial description of the displacement fields was assumed based on the second Frostig's model. The effects of types of boundary conditions, conical angles, length to radius ratio, core to shell thickness ratio and core radius to shell thickness ratio on the free vibration analysis of truncated conical composite sandwich shells were also studied. Numerical results are presented and compared with the latest results found in literature. Also, the results were validated with those derived by ABAQUS FE code.

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.