• 제목/요약/키워드: Core Injection

검색결과 343건 처리시간 0.035초

폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구 (A study on the effects of polymer core gate sizes on thickness shrinkage rate)

  • 최한솔;정의철;박준수;김미애;채보혜;김상윤;김용대;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.

디젤유분무의 초기분산과정에 관한 실험적 연구 (An experimental study on initial dispersion process of diesel fuel spray)

  • 허종철;구자왕;양옥룡
    • 오토저널
    • /
    • 제13권2호
    • /
    • pp.42-49
    • /
    • 1991
  • This study is to investigate the dispersion characteristics of diesel fuel spray in the initial stage of the beginning of the injection under the condition of room temperature and atmospheric pressure. It is difficult to analyse that the diesel fuel spray in diesel engine has unsteady intermittent spray. So author installed a fuel accumulator and an electromagnetic controller in order to keep the constant fuel injection rate with the time variation. With this modified fuel injection system, spray tip penetration, spray angle and initial spray development process are investigated by instantaneous photographic method. The results obtained in this study are as follows : 1) The initial shape of injection of diesel fuel spray shows the form of non-disintegrated intact core, but the formation of ligaments increasingly grows as the time increases. It can also be shown that fine droplets become disintegrated out from the ligaments. 2) The slope of spray tip penetration was changed to two different tendencies with time. The transition point of the slope is shown at the time of around between 0.09 msec and 0.4 msec from the beginning of injection. This is transition time from non-disintegrated intact core to formation of ligaments.

  • PDF

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

  • Bae, Hwang;Kim, Dong Eok;Ryu, Sung-Uk;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.968-978
    • /
    • 2017
  • Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal-hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

사출성형시 보압이 냉각시간에 미치는 영향 (Effects of holding pressure affecting cooling time in injection molding)

  • 문영배;최윤식;정영득
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2008
  • There occur not only many problems in the injection process but also low quality productivity due to the injection conditions of various injection factors. Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for the holding pressure affecting cooling time. Results of this study would be helpful to setting of holding pressure for optimization of forming condition in order to reduce cooling time in injection molding.

  • PDF

추진기관 시스템 시험설비의 화염유도로 설계 (Flame deflector design of test facility to propulsion system model)

  • 전성복;이재호;이광진;조남경
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.597-602
    • /
    • 2012
  • 화염유도로는 추진기관 시스템 시험설비 요소 중 추진기관시스템, 시험설비, 인적자원의 보호측면에서 매우 중요한 설계대상 중에 하나이다. 본 연구에서는 75톤과 300톤의 추진기관 시스템의 성능을 평가할 시험설비의 화염유도로 설계 방안에 대해 제안하였다. 설비가 구축될 장소의 경사로를 이용하여 화염유도로의 높이를 30m정도로 설계하였다. 개방형과 밀폐형 형상에 따라서 화염유도로의 적합성을 고려하였다. 또한 냉각을 위한 덕트를 core와 side분사 형태에 따라 모델링하였다.

  • PDF

카메라 모듈 부품 및 금형 코어 측정 시스템 개발 (Development of the inspection system for injection molding core and mobile camera module parts)

  • 신봉철;김건희;김재철;조명우
    • 한국산학기술학회논문지
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2009
  • 본 논문에서는 고품질 고기능성이 요구되는 카메라폰용 카메라 모들의 주요 부품인 초소형 플라스틱 barrel, base의 조립 토크 편차 저감을 위하여 금형 코어, 전극 및 사출성형품의 나사 형상의 주요 기하를 정밀하게 측정할 수 있는 시스템을 개발하였다. 해당 공정을 실현하기 위하여 품질 평가의 주요 측정 파라메터를 선정하고 측정 방법을 개발하였으며, 최종적으로 현장 적용이 가능한 전용 측정 시스템을 개발하였다.

다수 캐비티 금형에서 엘라스토머 수지의 균형충전도 연구 (A Study on the Filling Balance of Elastomer TPVs in Multi-Cavity Injection Mold)

  • 노병수;한성렬;한동엽;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.407-408
    • /
    • 2006
  • Almost all injection molds have multi-cavity, which are designed with geometrically balanced runner system in order to made filling balance between cavity to cavity during injection molding. However, filling imbalance has been existed in the geometrically balanced runner system. In this study, we made an experiment and surveyed that are filling balanced variation according to molding condition with thermoplastic vulcanizate (TPV). Also, we conducted experiments in order to know the influence of filling balance for runner core pin (RC pin).

  • PDF

차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구 (A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor)

  • 정삼두;김창녕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

재생 관통형 형판구조의 사출금형 개발 (Injection Mold of Through Plate Type for Recycling)

  • 송준엽;박태원;재덕근;정영득
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.123-129
    • /
    • 2003
  • Recently, the life cycle of products is rapidly shortened and then the disposal of the used mold applied in development of the product is a difficult thing. In this study, we proposed the feasibility of new three plate type mold structure for recycling by analyzing of the existing standard mold base. And in order to apply new three plate mold structure in mold design and making. we constructed the specifications for mold parts such as runner stripper plate, cavity plate, core plate and slide core unit. Also, we confirmed the possibility of recycling mold base by testing a used three plate mold for audio front panel.