• 제목/요약/키워드: Core Component

검색결과 715건 처리시간 0.022초

스위칭 주파수에 따른 전기 추진 항공기용 인버터 손실 분석 (Analysis of Inverter Losses according to Switching Frequency Using Electric Motor for Aircraft)

  • 구본수;조성현;최인호
    • 항공우주시스템공학회지
    • /
    • 제15권1호
    • /
    • pp.32-39
    • /
    • 2021
  • 전기추진 항공기는 기존 가스터빈 엔진에 의한 환경 및 소음 문제를 해결하기 위해 최근 항공분야에서 활발히 연구가 진행되고 있다. 특히 전기 동력추진 시스템의 핵심 구성품인 추력 모터와 이를 구동하기 위한 인버터에 대한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 무게와 부피에 민감한 항공기 특성에 맞는 비출력이 높은 모터를 선정하고, 전력 소자에 따른 인버터 전력 손실을 시뮬레이션 하였다. 시뮬레이션은 전력전자 분석 툴인 PSIM을 이용하여 선정된 모터와 전력 소자를 모델링하여 스위칭 주파수에 따른 인버터 전력 손실을 분석 하였다.

ICT 네트워크 기반에서의 스마트 농업 교육 서비스 (Smart Farming Education service based on ICT Network)

  • 김동일;정희창
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1534-1538
    • /
    • 2020
  • 스마트농업 교육 서비스는 농업정보의 확산을 촉진하기 위해 제공되며 농업 정보는 현재의 농업활동, 농산품, 농지에서의 생산자 경험으로부터 추출된다. 스마트농업 교육은 웹 오브젝트 기반의 자기주도형 학습으로 제공되어 공간, 장소, 시간에 제약을 받지 않는다. 본 연구에서는 클라우드를 기반으로 하는 학습관리기능과 감시기능, 학습심사기능 등으로 구성된 스마트농업 교육의 기준 구성도를 제시하여 스마트농업의 확산을 위해 필수적으로 요구되는 스마트 농업 교육 서비스 기술 표준 및 스마트 농업의 보급 과정에서 필요한 네트워크 기반 참조 모델을 제시 한다.

자동차 주유구 커버에 대한 사출성형과 2색 코팅 동시 구현에 관한 연구 (A study on simultaneous injection molding and two-color coating for car gas cap cover)

  • 배형섭;박동현;김부곤;서창호;허원근;이호상
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.32-40
    • /
    • 2021
  • Mold design for in-mold coating was carried out to achieve simultaneous injection molding and two-color coating for car gas cap cover. The developed mold includes one core and three cavities which are composed of a substrate cavity and two coating cavities. To provide a sealing edge for complete seal during the second coating, the first coated material was used at the boundary between the first coating and the second one, and injection molded substrate was used at the parting line. The materials used were PC/ABS for substrate and 2-component Polyurea for coating. Through experiments, it was found that the suggested sealing edges were effective for complete seal during the second coating. In cavity pressure traces, there were three peaks caused by mold closing, coating-material injection and cleaning-piston advancement inside the mixing head. The cavity pressure increased with decreasing coating thickness.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

Study on blockage after downward discharge of the molten metallic fuel with radiographic visualization

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.117-129
    • /
    • 2022
  • The downward discharge of the molten fuel to the lower structure of the fuel assembly could increase of the pressure drop and degrade of coolability of the assembly. To analyze the phenomena, experiments for the generation of the debris bed were conducted as LOF-DT series. Based on the debris bed in the LOF-DT, pressure drop experiment was conducted with intact and blocked component. Parametric study on the pressure drop was conducted by CFD. The LOF-DT experiments were conducted for the position and porosity of the debris bed. 85% of the debris were sedimented in the lower reflector, and 15% were in the nose piece, approximately. Porosity of the debris bed were about 0.7 and 0.85 in the lower reflector and nose piece, respectively. Pressure drop increased significantly with debris bed, especially in the lower reflector. More than 120 time of the pressure drop increased in the lower reflector, while only 10% increased in the nose piece. According to the parametric study, mass of the debris was the most important for pressure drop. The lower discharge phenomena could have a significant effect to the total pressure drop of the fuel assembly, approximately 10.8 times for the base case.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

The treatment of coolant wastewater of rolling plate process by High Gradient Magnetic Separation

  • Kim, Tae-Hyung;Ha, Dong-Woo;Kwon, Jun-Mo;Sohn, Myung-Hwan;Baik, Seung-Kyu;Oh, Sang-Soo;Ko, Rock-Kil;Kim, Ho-Sup;Kim, Young-Hun;Park, Seong-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.8-11
    • /
    • 2009
  • This study introduced wastewater treatment method by High Gradient Magnetic Separation (HGMS). HGMS treatment was high efficient method for various industrial wastewaters. The system is currently research state, but we have surveyed commercialize the technology for industry. In rolling plate process, coolant wastewater was recycled by sedimentation and sand filter system. It needs several large reservoirs and long time to remove suspended solid (SS) like metal fines and iron oxide in hot rolling plate making process. If removing rate of suspended solid in rolling coolant wastewater is improved by using HGMS system, the productivity of working process can be increased and the area of reservoir can be reduced. We manufactured high temperature superconducting HGMS system that had a purpose to treatment of coolant wastewater in rolling plate process. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel 430 mesh, which is a core component in the magnetic separation system, In our basic preliminary experiment using HGMS system, it has been clear that the fine paramagnetic particles in the coolant wastewater obtained from rolling plate process of POSCO can be separated with high efficiency.

MLCC용 유전체 소재의 연구개발 동향 (Recent Progress in Dielectric Materials for MLCC Application)

  • 서인태;강형원;한승호
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.103-118
    • /
    • 2022
  • With the recent increase in demand for electronic devices, multi-layer ceramic capacitors (MLCCs) have become the most important core component. In particular, the next-generation MLCC with extremely high reliability is required for the 4th industrial revolution and electric vehicle applications. Therefore, it is necessary to develop dielectric ceramic materials with high dielectric properties and reliability. During the decades, electrical properties of BaTiO3 based dielectric ceramics, which have been widely used in MLCC industrial field, have been improved by microstructure and defect chemistry control. However, electrical properties of BaTiO3 have reached their limits, and new types of dielectric materials have been widely studied. Based on these backgrounds, this report presents the recent development trends of BaTiO3-based dielectric materials for the next-generation MLCCs, and suggests promising candidates to replace BaTiO3 ceramics.

UAM 항공교통관리 인프라의 사이버보안 고려사항 및 대응방안 (Cyber Security Considerations and Countermeasures for UAM Air Traffic Management Infrastructure)

  • 김경욱
    • Journal of Information Technology Applications and Management
    • /
    • 제30권6호
    • /
    • pp.17-29
    • /
    • 2023
  • In this paper, we aim to propose cyber security considerations and countermeasures for infrastructure and services in the UAM(Urban Air Mobility) Air Traffic Management field, which is one of the key elements of the UAM market that has not yet bloomed. Air traffic management is an important factor for safe navigation and social acceptance of UAM. In order to realize air traffic management, infrastructure and services based on solid network connectivity must be established. And for industries where connectivity is the core component, it can become an infiltration route for cyber threats. Therefore, cyber security is essential for the infrastructure and services. In detail, we will look into the definition of the existing air traffic management field and the cyber threats. In addition, we intend to identify cyber security threat scenarios that may occur in the newly designed UAM air traffic management infrastructure. Moreover, in order to study the cyber security countermeasures of the UAM air traffic management infrastructure, there will be analysis of the UAM operation concept. As a result, countermeasures applicable to the infrastructure and service fields will be suggested by referring to the cyber security frameworks.

수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구 (Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank)

  • 김지형;송창용
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2024
  • As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.