DOI QR코드

DOI QR Code

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik (Department of Systems Biotechnology, Konkuk University) ;
  • Kim, Jinkwon (Department of Systems Biotechnology, Konkuk University) ;
  • Yoon, Eun Kyung (Department of Systems Biotechnology, Konkuk University) ;
  • Jang, Sejeong (Department of Systems Biotechnology, Konkuk University) ;
  • Ko, Kangseok (Department of Systems Biotechnology, Konkuk University) ;
  • Lim, Jun (Department of Systems Biotechnology, Konkuk University)
  • Received : 2021.10.21
  • Accepted : 2021.12.01
  • Published : 2022.04.30

Abstract

Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

Keywords

Acknowledgement

We thank Philip Benfey, Kim Gallagher, Ji-Young Lee, Arabidopsis Biological Resource Center (ABRC) and Nottingham Arabidopsis Stock Centre (NASC) for plant lines. We are grateful to Philip Benfey for critical reading and suggestions. This work was supported by the National Research Foundation (NRF-2021R1F1A1063302) and the Next-Generation BioGreen 21 project (SSAC-PJ01316101).

References

  1. Bai, M.Y., Shang, J.X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T.P., and Wang, Z.Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 14, 810-817. https://doi.org/10.1038/ncb2546
  2. Beemster, G.T. and Baskin, T.I. (1998). Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol. 116, 1515-1526. https://doi.org/10.1104/pp.116.4.1515
  3. Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., and Aeschbacher, R.A. (1993). Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57-70.
  4. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  5. Boron, A.K. and Vissenberg, K. (2014). The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep. 33, 697-706. https://doi.org/10.1007/s00299-014-1591-x
  6. Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A., Vaten, A., Thitamadee, S., et al. (2010). Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316-321. https://doi.org/10.1038/nature08977
  7. Chaiwanon, J., Wang, W., Zhu, J.Y., Oh, E., and Wang, Z.Y. (2016). Information integration and communication in plant growth regulation. Cell 164, 1257-1268. https://doi.org/10.1016/j.cell.2016.01.044
  8. Chebli, Y. and Geitmann, A. (2017). Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 44, 28-35. https://doi.org/10.1016/j.ceb.2017.01.002
  9. Clark, N.M., Hinde, E., Winter, C.M., Fisher, A.P., Crosti, G., Blilou, I., Gratton, E., Benfey, P.N., and Sozzani, R. (2016). Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. Elife 5, e14770. https://doi.org/10.7554/elife.14770
  10. Clough, S. and Bent, A. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  11. Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850-861. https://doi.org/10.1038/nrm1746
  12. Cosgrove, D.J. (2016a). Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463-476. https://doi.org/10.1093/jxb/erv511
  13. Cosgrove, D.J. (2016b). Catalysts of plant cell wall loosening. F1000Res. 5, F1000 Faculty Rev-119.
  14. Cruz-Ramirez, A., Diaz-Trivino, S., Blilou, I., Grieneisen, V.A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., et al. (2012). A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002-1015. https://doi.org/10.1016/j.cell.2012.07.017
  15. Cui, H., Hao, Y.L., Kovtun, M., Stolc, V., Deng, X.W., Sakakibara, H., and Kojima, M. (2011). Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis. Plant Physiol. 157, 1221-1231. https://doi.org/10.1104/pp.111.183178
  16. Cui, H., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B., and Benfey, P.N. (2007). An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421-425. https://doi.org/10.1126/science.1139531
  17. Curtis, M.D. and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469. https://doi.org/10.1104/pp.103.027979
  18. De Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. https://doi.org/10.1038/nature06520
  19. Dhondt, S., Coppens, F., De Winter, F., Swarup, K., Merks, R.M., Inze, D., Bennett, M.J., and Beemster, G.T. (2010). SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol. 154, 1183-1195. https://doi.org/10.1104/pp.110.158857
  20. Di Laurenzio, L., Wysocka-Diller, J., Malamy, J.E., Pysh, L., Helariutta, Y., Freshour, G., Hahn, M.G., Feldmann, K.A., and Benfey, P.N. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423-433. https://doi.org/10.1016/S0092-8674(00)80115-4
  21. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616-629. https://doi.org/10.1111/j.1365-313X.2005.02617.x
  22. Eklof, J.M. and Brumer, H. (2010). The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiol. 153, 456-466. https://doi.org/10.1104/pp.110.156844
  23. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., et al. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479. https://doi.org/10.1038/nature06448
  24. Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P.N., and Tasaka, M. (1998). Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 14, 425-430. https://doi.org/10.1046/j.1365-313X.1998.00137.x
  25. Gallagher, K.L. and Benfey, P.N. (2009). Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J. 57, 785-797. https://doi.org/10.1111/j.1365-313X.2008.03735.x
  26. Gallagher, K.L., Paquette, A.J., Nakajima, K., and Benfey, P.N. (2004). Mechanisms regulating SHORT-ROOT intercellular movement. Curr. Biol. 14, 1847-1851. https://doi.org/10.1016/j.cub.2004.09.081
  27. Gardiner, J., Donner, T.J., and Scarpella, E. (2011). Simultaneous activation of SHR and ATHB8 expression defines switch to preprocambial cell state in Arabidopsis leaf development. Dev. Dyn. 240, 261-270. https://doi.org/10.1002/dvdy.22516
  28. Gendreau, E., Traas, J., Desnos, T., Grandjean, O., Caboche, M., and Hofte, H. (1997). Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114, 295-305. https://doi.org/10.1104/pp.114.1.295
  29. Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., and Benfey, P.N. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555-567. https://doi.org/10.1016/S0092-8674(00)80865-X
  30. Heo, J.O., Chang, K.S., Kim, I.A., Lee, M.H., Lee, S.A., Song, S.K., Lee, M.M., and Lim, J. (2011). Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proc. Natl. Acad. Sci. U. S. A. 108, 2166-2171. https://doi.org/10.1073/pnas.1012215108
  31. Hirano, Y., Nakagawa, M., Suyama, T., Murase, K., Shirakawa, M., Takayama, S., Sun, T.P., and Hakoshima, T. (2017). Structure of the SHR-SCR heterodimer bound to the BIRD/IDD transcriptional factor JKD. Nat. Plants 3, 17010. https://doi.org/10.1038/nplants.2017.10
  32. Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. https://doi.org/10.1038/nprot.2008.211
  33. Kim, G., Dhar, S., and Lim, J. (2017). The SHORT-ROOT regulatory network in the endodermis development of Arabidopsis roots and shoots. J. Plant Biol. 60, 306-313. https://doi.org/10.1007/s12374-017-0134-8
  34. Koizumi, K., Hayashi, T., and Gallagher, K.L. (2012a). SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. Plant Signal. Behav. 7, 1573-1577. https://doi.org/10.4161/psb.22437
  35. Koizumi, K., Hayashi, T., Wu, S., and Gallagher, K.L. (2012b). The SHORTROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue. Proc. Natl. Acad. Sci. U. S. A. 109, 13010-13015. https://doi.org/10.1073/pnas.1205579109
  36. Lee, D., Polisensky, D.H., and Braam, J. (2005). Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol. 165, 429-444. https://doi.org/10.1111/j.1469-8137.2004.01238.x
  37. Lee, S.A., Jang, S., Yoon, E.K., Heo, J.O., Chang, K.S., Choi, J.W., Dhar, S., Kim, G., Choe, J.E., Heo, J.B., et al. (2016). Interplay between ABA and GA modulates the timing of asymmetric cell divisions in the Arabidopsis root ground tissue. Mol. Plant 9, 870-884. https://doi.org/10.1016/j.molp.2016.02.009
  38. Levesque, M.P., Vernoux, T., Busch, W., Cui, H., Wang, J.Y., Blilou, I., Hassan, H., Nakajima, K., Matsumoto, N., Lohmann, J.U., et al. (2006). Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol. 4, e143. https://doi.org/10.1371/journal.pbio.0040143
  39. Lucas, M., Swarup, R., Paponov, I.A., Swarup, K., Casimiro, I., Lake, D., Peret, B., Zappala, S., Mairhofer, S., Whitworth, M., et al. (2011). SHORTROOT regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol. 155, 384-398. https://doi.org/10.1104/pp.110.165126
  40. Marsch-Martinez, N., Franken, J., Gonzalez-Aguilera, K.L., de Folter, S., Angenent, G., and Alvarez-Buylla, E.R. (2013). An efficient flat-surface collar-free grafting method for Arabidopsis thaliana seedlings. Plant Methods 9, 14. https://doi.org/10.1186/1746-4811-9-14
  41. Miedes, E., Suslov, D., Vandenbussche, F., Kenobi, K., Ivakov, A., Van Der Straeten, D., Lorences, E.P., Mellerowicz, E.J., Verbelen, J.P., and Vissenberg, K. (2013). Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J. Exp. Bot. 64, 2481-2497. https://doi.org/10.1093/jxb/ert107
  42. Morita, M.T., Saito, C., Nakano, A., and Tasaka, M. (2007). Endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT. Adv. Space Res. 39, 1127-1133. https://doi.org/10.1016/j.asr.2006.12.020
  43. Nakajima, K., Sena, G., Nawy, T., and Benfey, P.N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307-311. https://doi.org/10.1038/35095061
  44. Oh, E., Zhu, J.Y., Bai, M.Y., Arenhart, R.A., Sun, Y., and Wang, Z.Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3, e03031. https://doi.org/10.7554/elife.03031
  45. Paquette, A.J. and Benfey, P.N. (2005). Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT. Plant Physiol. 138, 636-640. https://doi.org/10.1104/pp.104.058362
  46. Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., and Benfey, P.N. (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111-119. https://doi.org/10.1046/j.1365-313X.1999.00431.x
  47. Refregier, G., Pelletier, S., Jaillard, D., and Hofte, H. (2004). Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol. 135, 959-968. https://doi.org/10.1104/pp.104.038711
  48. Rose, J.K., Braam, J., Fry, S.C., and Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421-1435. https://doi.org/10.1093/pcp/pcf171
  49. Sablowski, R. (2016). Coordination of plant cell growth and division: collective control or mutual agreement? Curr. Opin. Plant Biol. 34, 54-60. https://doi.org/10.1016/j.pbi.2016.09.004
  50. Sablowski, R. and Gutierrez, C. (2021). Cycling in a crowd: coordination of plant cell division, growth and cell fate. Plant Cell 2021 Sep 8 [Epub]. https://doi.org/10.1093/plcell/koab222
  51. Sozzani, R., Cui, H., Moreno-Risueno, M., Busch, W., Van Norman, J., Vernoux, T., Brady, S., Dewitte, W., Murray, J., and Benfey, P. (2010). Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128-132. https://doi.org/10.1038/nature09143
  52. Sun, N., Wang, J.J., Gao, Z.X., Dong, J., He, H., Terzaghi, W., Wei, N., Deng, X.W., and Chen, H.D. (2016). Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proc. Natl. Acad. Sci. U. S. A. 113, 6071-6076. https://doi.org/10.1073/pnas.1604782113
  53. Ubeda-Tomas, S., Swarup, R., Coates, J., Swarup, K., Laplaze, L., Beemster, G.T., Hedden, P., Bhalerao, R., and Bennett, M.J. (2008). Root growth in Arabidopsis requires gibberellin/DELLA signaling in the endodermis. Nat. Cell Biol. 10, 625-628. https://doi.org/10.1038/ncb1726
  54. Uchida, N., Lee, J.S., Horst, R.J., Lai, H.H., Kajita, R., Kakimoto, T., Tasaka, M., and Torii, K.U. (2012). Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. Proc. Natl. Acad. Sci. U. S. A. 109, 6337-6342. https://doi.org/10.1073/pnas.1117537109
  55. Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., and Benfey, P.N. (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595-603. https://doi.org/10.1242/dev.127.3.595
  56. Yokoyama, R. and Nishitani, K. (2001). A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol. 42, 1025-1033. https://doi.org/10.1093/pcp/pce154
  57. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572. https://doi.org/10.1038/nprot.2007.199
  58. Yoon, E.K., Dhar, S., Lee, M.H., Song, J.H., Lee, S.A., Kim, G., Jang, S., Choi, J.W., Choe, J.E., Kim, J.H., et al. (2016). Conservation and diversification of the SHR-SCR-SCL23 regulatory network in the development of the functional endodermis in Arabidopsis shoots. Mol. Plant 9, 1197-1209. https://doi.org/10.1016/j.molp.2016.06.007
  59. Yu, N.I., Lee, S.A., Lee, M.H., Heo, J.O., Chang, K.S., and Lim, J. (2010). Characterization of SHORT-ROOT function in the Arabidopsis root vascular system. Mol. Cells 30, 113-119. https://doi.org/10.1007/s10059-010-0095-y