• Title/Summary/Keyword: Cordierite

Search Result 170, Processing Time 0.029 seconds

Evaluation of Bending Strength for Ceramic Honeycomb Using Design of Experiments (실험계획법을 이용한 세라믹 허니컴의 굽힘강도평가)

  • Kim, Jong-Kyu;Baek, Seok-Heum;Cho, Seok-swoo;Shin, Soon-Ki;Joo, Won-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.379-384
    • /
    • 2006
  • Since the monolithic ceramic substrate was introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore This study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.

  • PDF

Study on the Fabrication of Ceramic Core using a Gel-casting Process in Aqueous medium(I) : Gelation Behavior of Polydispered Ceramic Slip (수용액 매체에서 젤-케스팅 공정을 이용한 세라믹 코어 제조에 관한 연구(I) : 다성분계 분산 세라믹 슬립의 젤화 거동)

  • Kim, Jae-Won;Kim, Du-Hyeon;Kim, In-Su;Yu, Yeong-Su;Kim, Jae-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.137-145
    • /
    • 2001
  • A new process, gelcasting in aqueous medium, to fabricate complex-shaped ceramic core has investigated. The ceramic slurry, mixture of fused silica powder and additives such as zircon and cordierite, was electrosterically stabilizes. The slip was prepared by ball milling of polydispered ceramic suspension with monomer, dimer and dispersant. The rheological behavior of slip was evaluated by viscosity measurement. It was found that the high solid loading of polydispersed ceramic slip, which has low viscosity of 50vol%, is possible to obtained. The viscosity of the slip was significantly dependent upon the amount of polymer dispersant and the formulation of monomer and dimer. The green bodies were fabricated through casting and gelation at room temperature followed by drying at $25^{\circ}C$ for 48hrs under relative humidity of 80~85%. Crack-free green body was successfully fabricated through the above process.

  • PDF

Fabrication and characteristics of porous ceramics from $ZrTiO_4$ based ceramic material (다공성 $ZrTiO_4$ 재료의 제조 및 특성)

  • Hur, Geun;Myoung, Seong-Jae;Lee, Yong-Hyun;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Cordierite has a very low thermal expansion coefficient, but has problem that it has a weak mechanical strength and is apt to be attacked by acid such as sulfur for using as a diesel particulate filter support. The physical properties of $ZrTiO_4$ modified with $SiO_2,\;Al_2O_3$, MoOx, $Cr_2O_3\;and\;Nb_2O_5$ were investigated with XRD, SEM, UTM and thermal expansion, etc. in this paper. $ZrTiO_4$ powder was synthesized as a monoclinic structure with processes that starting materials of $TiO_2\;and\;ZrO_2$ were mixed with ball mill and calcined above $1240^{\circ}C$ for 3 hr. Additive modified $ZrTiO_4$ specimens for flexural strength and thermal expansion measurement were obtained by mixing $ZrTiO_4$ powder with additives, pressing and firing at $1300^{\circ}C$ for 3 hr. The porosity of additive modified $ZrTiO_4$ decreased monotonically with increasing additive content by 5 wt% regardless of additive types and saturated for further increase of additive by 10wt. The flexural strength of $Al_2O_3$ (5, 10 wt%) modified $ZrTiO_4$ shows a large increase, but that of other additives modified $ZrTiO_4$ decreased. The thermal expansion coefficient of additive modified $ZrTiO_4$ except $Nb_2O_5$ decreased continuously with the content of additive. In particular, the lowest thermal expansion coefficient of $ZrTiO_4$ was obtained for the additive of $SiO_2$.

The Microstructure of Magnetite Coated on Honeycomb and Characteristics of CO2 Decomposition (허니컴에 코팅한 마그네타이트의 미세구조 및 CO2 분해특성)

  • 윤용운;김은배;이병하;고태경;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.410-416
    • /
    • 2004
  • In this study, we fabricated magnetite coated on a cordierite honeycomb which has complex shape by ultrasound-enhanced ferrite plating. The effects of the plating condition on the formation of the magnetite and its microstructure were investigated. The magnetite coated on the honeycomb became an oxygen-deficient ferrite by H$_2$ gas reduction, then the effects of the molar concentrations of ammonium acetate for $CO_2$ gas decomposition have been studied. As the molar concentration of a pH buffer($CH_3$COONH$_4$, 0.1946∼0.3892 M) solution increased, the average particle size increased about 200∼250 nm. The magnetite coated on the honeycomb was reduced by H$_2$ gas for 2 h at 30$0^{\circ}C$. The inner pressure change in the cell began to occur at 315∼34$0^{\circ}C$. The H$_2$-Reduced magnetite coated on the honeycomb at 35$0^{\circ}C$ contained an oxygen deficient magnetite and $\alpha$-Fe phase. The thermogravimetric analysis with H$_2$ reduction and $CO_2$ decomposition were carried out with the magnetite coated on the honeycomb. A weight loss in process of H$_2$ reduction occurred between 32$0^{\circ}C$ and 34$0^{\circ}C$, while a weight gain was observed during the $CO_2$ decomposition.

Geochemistry and Metamorphism of the Gneisses in Gwangyang-Hadong Area (광양-하동지역에 분포하는 편마암류의 지구화학 및 변성작용)

  • Park, Bae-Young;Suh, Gu-Won
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.221-245
    • /
    • 2008
  • The precambrian granitic gneiss and porphyroblastic gneiss are widely distributed in the Gwangyang-Hadong area of Korea. This study focuses on the geochemical properties and metamorphic P-T conditions of these gneisses. These gneisses are plotted according to granodiorite domain on an IUGS silica-alkali diagram. Geochemical properties of major elements suggest that these rocks are of the sub-alkalic rock series, and were farmed from S-type magmas which were generated in a syn-collision tectonic environment. The amounts of trace elements (Zn, Sc, Sr, V, etc.) decreased as $SiO_2$ concentrations increased. Almandine and spessartine mol%'s and XFe are higher in garnet rims, while pyrope mol%'s are higher in the garnet cores. This seems to be the result of garnet growth and retrogressive metamorphism. Metamorphic zones are divided into sillimanite-cordierite, sillimanite, garnet, and biotite zones. Metamorphic P-T conditions estimated from the gneisses indicate high temperature and low to medium pressure metamorphism (689-757$^{\circ}C$, 5.0-5.6 kbar), followed by medium temperature, low pressure retrorade metamorphism (579-628$^{\circ}C$, 3.1-4.5 kbar), and overprinted retrogade metamorphism (502-558$^{\circ}C$, 1.6-2.3 kbar).

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

Metamorphism of the Hongjesa granite and the adjacent metasedimentary rocks(Magmatism and metamorphism of the Proterozoic in the northeastern part of Korea) (홍제사 화강암과 주변 변성퇴적암류의 변성작용 (한국 북동부지역의 원생대의 화성활동과 변성작용))

  • Jeongmin Kim;Moonsup Cho;Hyung Shik Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.94-108
    • /
    • 1994
  • The Precambrian granite, and the Yuli group and the Hyeondong gneisss complex are studied to unravel the metamorphic history of the northeastern Sobaeksan massif. The Hongjesa granite, emplaced at 650-$700^{\circ}C$ and $3{\pm}1$ kbar, has been altered at 310-$568^{\circ}C$. Not only the chloritization of biotite but also the sericitization and saussuritization of plagioclase occur at the subsolidus stage. Biotites of the Hongjesa granite vary in their Al, Fe and Mg contents through dioctahedral and tschermakitic substitutions during the subsolidus stage. Secondary muscovites from biotite and feldspars are enriched in their Si and Mg+Fe contents through tschermakitic and trictahedral substitutuions. The metamorphic pressures and temperatures estimated from the Hyeondong gneiss complex are 3.6-6.6 kbar and 593-$718^{\circ}C$, respectively. Local migmatization producing the cordierite-bearing assemblage occurs in the Hyeondong gneiss complex. The Gibbs' method applied to the assemblage of garnet+biotite+plagioclase+quartz in banded gneiss suggests a complex P-T history of the Hyeondong gneiss complex.

  • PDF

Petrochemistry and Geologic Structure of Icheon Granitic Gneiss around Samcheog Area, Korea (삼척지역 이천화강편마암의 암석화학과 지질구조)

  • Cheong Won-Seok;Cheong Sang-Won;Na Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.25-38
    • /
    • 2006
  • Metamophic rocks of Samcheog area, northeastern Yeongnam massif, was studied petrochemically. This area includes Precambrian Hosanri Formation (schists and gneisses) and granitoid (Icheon granitic gneiss, leucocratic granite and Hongjesa granite), Cambrian sedimentary rocks, and Cretaceous sedimentary and acidic volcanic rocks. Hosanri formation is composed of quartz+plagioclase+K-feldspar+biotite+muscovite+granet${\pm}$cordierite${\pm}$sillimanite. Mineral assemblage of biotite granitic gneiss, which is massive granodioritic rock with weak foliation, is similar to Hosanri formation. According to mineral assemblages, metamorphic rocks of studied area can be divided into two metamorphic zones (garnet and sillimanite zones). From Icheonri area, major, trace and rare earth element data of biotite granitic gneiss and luecocratic granite suggest that source rock is politic rocks of Hosanri formation and source magma was formed by anatexis and experienced fractionation of plagioclase. Trace element diagram show collisional environment such as syn-collisional, volcanic arc granite. Orientation of faults in study area have three maximum concentrations, $N54^{\circ}\;W/77^{\circ}\;SW,\;N49^{\circ}\;W/81^{\circ}\;NE\;and\;N10^{\circ}\;W/38^{\circ}\;NE$. Structure analysis suggests that faults in study area ware formed by uplift and compression. Faulting age is guessed after Tertiary because some shear joints is developed in dikes to intrusive Cretaceous acidic volcanic rock. Hosanri formation and Icheon granitic gneiss had experienced similar deformation history because they have maximum concentration to foliations, $N89^{\circ}\;E/55^{\circ}\;SE\;and\;N80^{\circ}\;E/45^{\circ}\;SE$, respectively.

Metamorphism of the Buncheon and Hongjeas Granitic Gneisses (분천과 홍제사 화강암질 편마암체의 변성작용)

  • 김형수;이종혁
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.61-87
    • /
    • 1995
  • On the basis of lithology, the Precambrian Hongjesa Granitic Gneiss can be locally zoned into granoblastic granitic gneiss, porphyroblastic granitic gneiss, migmatitic gneiss from its center to the marginal part. There are no distinct differences in mineral assemblages by lithologic zoning, but it partly shows the change of mineral assemblage in the adjacent with migmatitic gneiss, thus mineral assemblage can be subdivided into Zone I and Zone II. In terms of mineral compositions, the characteristics of Zone I are coexisting K-feldspar+muscovite+sillimanite. The characteristics of Zone II are (1) breakdown of muscovite, (2) coexisting garnetScordierite, (3) coexisting garnet+cordierite + orthoamphibole. The Buncheon Granitic Gneiss is mainly composed of augen gneiss. In the adjacent area with Honjesa Granitic Gneisses, Buncheon Granitic Gneiss has the mineral assemblage of sillimanite+biotite+K-feldspar+(kyanite). Kyanite occurs as relict grains in the Buncheon and Hongjesa Granitic Gneissess. Kyanite shows anhedral to subhedral form and coexists with sillimanite in only one of these samples. Garnet from a migmatitic gneiss (Zone 11) has relatively high $X_{Fe}$ value in core and rim. Garnet from a porphyroblastic granitic gneiss(Zone I) has relatively homogemeous core but compositionally-zoned rim. Biotites show various colour from greenish-brown, brown to reddish brown at maximum adsorption. Also, the Ti, and Mg content in biotites increases from Zone I to Zone II. The plagioclases shows the chemical composition of $Ab_{84}An_{16}$ -$Ab_{70}An_{30}$ (oligoclase) in Zone I and $Ab_{70}An_{30}$ -$Ab_{50}An_{50}$(andesine) in Zone 11. These variations indicate that the gneisses in the study area experienced a upperamphibolite facies. The presence of kyanite as relict grains indicates that the metamorphic rocks in this area exprienced a high-temperature/medium-pressure type metamorphism, followed by high-temperaturellow-pressure metamorphism. Metamorphic P-T conditions for each gneiss estimated from various geothermobarometers and phase equilibria are 698-$729^{\circ}C$/6.3-11.3 kbar in augen gneiss, 621-$667^{\circ}C$/1.0-5.4 kbar in migmatitic gneiss, and 602-$624^{\circ}C$/1.9-3.4 kbar in porphyroblastic granitic gneiss. These data suggest that the study area was subjected to a clockwise P-T path with isothermal decompression (dP/dT=about 60 bar/$^{\circ}C$).

  • PDF

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF