DOI QR코드

DOI QR Code

The Microstructure of Magnetite Coated on Honeycomb and Characteristics of CO2 Decomposition

허니컴에 코팅한 마그네타이트의 미세구조 및 CO2 분해특성

  • 윤용운 (인하대학교 세라믹공학과) ;
  • 김은배 (명지대학교 무기재료공학) ;
  • 이병하 (명지대학교 무기재료공학) ;
  • 고태경 (인하대학교 세라믹공학) ;
  • 오재희 (인하대학교 세라믹공학과)
  • Published : 2004.05.01

Abstract

In this study, we fabricated magnetite coated on a cordierite honeycomb which has complex shape by ultrasound-enhanced ferrite plating. The effects of the plating condition on the formation of the magnetite and its microstructure were investigated. The magnetite coated on the honeycomb became an oxygen-deficient ferrite by H$_2$ gas reduction, then the effects of the molar concentrations of ammonium acetate for $CO_2$ gas decomposition have been studied. As the molar concentration of a pH buffer($CH_3$COONH$_4$, 0.1946∼0.3892 M) solution increased, the average particle size increased about 200∼250 nm. The magnetite coated on the honeycomb was reduced by H$_2$ gas for 2 h at 30$0^{\circ}C$. The inner pressure change in the cell began to occur at 315∼34$0^{\circ}C$. The H$_2$-Reduced magnetite coated on the honeycomb at 35$0^{\circ}C$ contained an oxygen deficient magnetite and $\alpha$-Fe phase. The thermogravimetric analysis with H$_2$ reduction and $CO_2$ decomposition were carried out with the magnetite coated on the honeycomb. A weight loss in process of H$_2$ reduction occurred between 32$0^{\circ}C$ and 34$0^{\circ}C$, while a weight gain was observed during the $CO_2$ decomposition.

초음파 여기 페라이트 플레이팅(ultrasound-enhanced ferrite plating)법으로 복잡한 형상을 가진 코디어라이트 허니컴에 마그네타이트(Fe$_3$O$_4$)를 코팅하고, 제조 공정 조건의 변화가 마그네타이트 코팅 막의 형성과 미세구조에 미치는 영향에 대해 고찰하였다. 또한, 수소 환원과정을 통해 제조된 산소부족형 마그네타이트 막을 이용하여 코팅막의 형성조건이 $CO_2$가스 분해 특성에 미치는 영향에 대해 검토하였다. pH 완충제($CH_3$COONH$_4$)의 몰농도가 증가함에 따라 제조된 허니컴에 코팅된 마그네타이트 막의 평균 입자 크기는 약 200∼250 nm로 증가하였다. 이들 코팅막을 30$0^{\circ}C$에서 2시간동안 수소 환원시켜 산소부족형 마그네타이트를 만든 후 $CO_2$ 가스 중에서 온도를 올리면서 반응기 내부의 압력변화를 측정한 결과, 약 315∼34$0^{\circ}C$를 시작으로 $CO_2$가 분해하면서 반응기 내부의 압력이 감소하였다. 350"$^{\circ}C$에서 수소 환원된 시편에서는 산소부족형 마그네타이트와 일부 $\alpha$-Fe 상이 나타났다. 허니컴에 코팅된 마그네타이트의 수소 환원 및 $CO_2$ 가스 분해 과정에서 생기는 중량 변화를 측정한 결과 수소 환원 과정에서 약 320∼34$0^{\circ}C$에서부터 급격한 중량감소가 일어났고, $CO_2$ 가스 분해 과정에서는 중량의 증가가 나타났다.

Keywords

References

  1. Chem. Ind and Tech. v.11 no.4 Technologies for Arresting Grobal Warming by $CO_2$ J. W. Park;S. M. Lee
  2. Ceramist v.3 no.5 Carbon Dioxide Treatment and Environment Ceramics H. S. Shin;S. C. Choi;J. C. Lee;J. H. Oh
  3. Energy Eng. J. v.8 no.1 $CO_2$ Gas Decomposition with Sr Ferrite H. C. Shin;C. Kim;J. C. Choi;M. Tsuji;S. C. Choi
  4. J. Carbon v.33 no.10 $CO_2$ Decomposition to Carbon with Ferrite Derived Metallic Phase at $300^{\circ}$C T. Kodama;T. Sano;T. Yoshida;M. Tsuji;Y. Tamaura https://doi.org/10.1016/0008-6223(95)00094-T
  5. Mater. Chem. and Phys. v.62 Studies on the Decomposition of Carbon Dioxide into Carbon with Oxygen-Deficient Magnetite : I. Preparation, Characterization of Magnetite, and Its Activity of Decomposing Carbon Dioxide C.-L. Zhang;S. Li;L.-J. Wang;T.-H. Wu;S.-Y. Peng https://doi.org/10.1016/S0254-0584(99)00169-8
  6. Mater. Chem. and Phys. v.62 Studies on the Decomposition of Carbon Dioxide into Carbon with Oxygen-Deficient Magnetite : II. The Effect of Properties of Magnetite on Activity of Decomposition $CO_2$ and Mechanism of the Reaction C.-L. Zhang;S. Li;L.-J. Wang;T.-H. Wu;S.-Y. Peng https://doi.org/10.1016/S0254-0584(99)00168-6
  7. Energy Convers Mgmt v.37 Integrated Carbon Recycling System for Mitigation of $CO_2$ Emissions Utilizing Degraded Thermal Energy N. Hasegawa;T. Yoshida;M. Tsuji;Y. Tamaura https://doi.org/10.1016/0196-8904(95)00342-8
  8. Nature v.346 Complete Reduction of Carbon Dioxide to Carbon Using Cation-Excess Magnetite Y. Tamaura;M. Tahata https://doi.org/10.1038/346255a0
  9. J. of the Kor. Mag. Soc. v.6 no.3 Preparation of $Fe_{3-x}$$MnO_4$ Films by the Ferrite Plating and Its Magnetic Properties T. W. Ha;J. S. Lee
  10. J. Appl. Phys. v.55 no.6 Ferrite Plating in Aqueous Solution : New Technique for Preparing Magnetic Thin Film M. Abe;Y. Tamura https://doi.org/10.1063/1.333254
  11. J. Mag. and Mag. Mater. v.193 Low-Temperature Fabrication of Co Ferrite Thin Films with High Corecivity for Perpendicular Recording Disks by Wet Process Y. Kitamoto;S. Kantake;F. Shirasaki;M. Abe;M. Naoe https://doi.org/10.1016/S0304-8853(98)00409-0
  12. IEEE Trans. Mag. v.38 no.5 The Microstructure and Characteristics of Magnetite Thin Films Prepared by Ultrasound-Enhanced Ferrite Plating C.-Y. Oh;J.-H. Oh;T. Y. Ko https://doi.org/10.1109/TMAG.2002.802121
  13. IEEE Trans. Mag. v.35 no.5 Ultrasound Enhanced Ferrite Plating of Polymer Microspheres for Magnetic Cellular Segregation M. Ojim;F. Shirasaki;Y. Kitamoto;M. Abe https://doi.org/10.1109/20.800774
  14. Thin Solid Films v.216 Magnetic and Biomagnetic Films Obtained by Ferrite Plating in Aqueous Solution M. Abe;T. Itoh;Y. Tamaura https://doi.org/10.1016/0040-6090(92)90887-H
  15. Ceramist v.3 no.6 Preparation of Ceramic Honeycomb and Application H. K. Cho
  16. Trans. on EEM v.11 no.8 The Properties and Manufacturing of $Fe_{3-x}$$Ni_x$$O_4$ Films by Spin-Spray Ferrite Method M. H. Kim;K. U. Jang;M. Abe