• 제목/요약/키워드: Copy number variation

검색결과 62건 처리시간 0.025초

Mitochondrial Genome Microsatellite Instability and Copy Number Alteration in Lung Carcinomas

  • Dai, Ji-Gang;Zhang, Zai-Yong;Liu, Quan-Xing;Min, Jia-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2393-2399
    • /
    • 2013
  • Objective: Mitochondrial DNA (mtDNA) is considered a hotspot of mutations in various tumors. However, the relationship between microsatellite instability (MSI) and mtDNA copy number alterations in lung cancer has yet to be fully clarifieds. In the current study, we investigated the copy number and MSI of mitochondrial genome in lung carcinomas, as well as their significance for cancer development. Methods: The copy number and MSI of mtDNA in 37 matched lung carcinoma/adjacent histological normal lung tissue samples were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays for sequence variation, followed by sequence analysis and fluorogenic 5'-nuclease real-time PCR. Student's t test and linear regression analyses were employed to analyze the association between mtDNA copy number alterations and mitochondrial MSI (mtMSI). Results: The mean copy number of mtDNA in lung carcinoma tissue samples was significantly lower than that of the adjacent histologically normal lung tissue samples (p<0.001). mtMSI was detected in 32.4% (12/37) of lung carcinoma samples. The average copy number of mtDNA in lung carcinoma samples containing mtMSI was significantly lower than that in the other lung carcinoma samples (P<0.05). Conclusions: Results suggest that mtMSI may be an early and important event in the progression of lung carcinogenesis, particularly in association with variation in mtDNA copy number.

Web-Based Database and Viewer of East Asian Copy Number Variations

  • Kim, Ji-Hong;Hu, Hae-Jin;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제10권1호
    • /
    • pp.65-67
    • /
    • 2012
  • We have discovered copy number variations (CNVs) in 3,578 Korean individuals with the Affymetrix Genome-Wide SNP array 5.0, and 4,003 copy number variation regions (CNVRs) were defined in a previous study. To explore the details of the variants easily in related studies, we built a database, cataloging the CNVs and related information. This system helps researchers browsing these variants with gene and structure variant annotations. Users can easily find specific regions with search options and verify them from system-integrated genome browsers with annotations.

No Association between Copy Number Variation of the TCRB Gene and the Risk of Autism Spectrum Disorder in the Korean Population

  • Yang, So-Young;Yim, Seon-Hee;Hu, Hae-Jin;Kim, Soon-Ae;Yoo, Hee-Jeong;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제8권2호
    • /
    • pp.76-80
    • /
    • 2010
  • Although autism spectrum disorder (ASD) has been thought to have a substantial genetic background, major contributing genes have yet to be identified or successfully replicated. Immunological dysfunction has been suggested to be associated with ASD, and T cell-mediated immunity was considered important for the development of ASD. In this study, we analyzed 163 ASD subjects and 97 normal controls by genomic quantitative PCR to evaluate the association between the copy number variation of the 7q34 locus, harboring the TCRB gene, and ASDs. As a result, there was no significant difference of the frequency distribution of TCRB copy numbers between ASD cases and normal controls. TCRB gene copy numbers ranged from 0 to 5 copies, and the frequency distribution of each copy number was similar between the two groups. The proportion of the individuals with <2 copies of TCRB was 52.8% (86/163) in ASD cases and 57.1% (52/91) in the control group (p=0.44). The proportion of individuals with >2 copies of TCRB was 11.7% (19/163) in ASD cases and 12.1% (11/91) in the control group (p=0.68). After the effects of sex were adjusted by logistic regression, ORs for individuals with <2 copies or >2 copies showed no significant difference compared with the diploid copy number as reference (n=2). Although we could not see the positive association, our results will be valuable information for mining ASD-associated genes and for exploring the role of T cell immunity further in the pathogenesis of ASD.

인간 게놈의 Copy Number Variation과 유전자 질환 (UNDERSTANDING OF EPIGENETICS AND DNA METHYLATION)

  • 오정환
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.205-212
    • /
    • 2008
  • 인간 게놈의 DNA서열의 차이는 개개인의 특이성을 의미하기 때문에 염기서열의 변화는 질병에 대한 감수성, 약물에 대한 반응 등 개인의 성향에 큰 영향을 미치게 된다. 인간 게놈에는 여러 가지 형태의 유전적 변이가 존재하지만 그 중 단일염기다형성이 인간의 유전적, 표현형의 다양성을 설명하는 주된 유전적 변이로 생각되었으나 최근 유전체 전체 분석법의 발전으로 1 kb 이상 크기의 CNV의 발견으로 개체간의 유전적 다양성에 대한 더 많은 이해가 가능하게 되었고, 진화와 유전 질환에 대한 CNV의 역할을 조사하는 연구의 기초를 제공하게 되었다. 현재 인간게놈의 CNV를 찾아내고 특성화 작업을 목표로 하는 The Copy Number Variation Project를 위해 The Wellcome Trust Institute (Hinxton, United Kingdom), Hospital for Sick Children (Toronto), University of Tokyo (Tokyo), Affymetrix (Santa Clara, CA), 그리고 Harvard Medical School/Brigham and Women's Hospital (Boston, MA) 등이 참여하는 international consortium이 구성되어 보다 심도 있는 연구가 진행되고, 또한 향후 진보된 DNA microarray-based technology와 서열화 기술의 개발로 인간 게놈 상의 모든 유전적 변이를 발견하게 되고 포괄적인 CNV 지도를 완성하고 인간 유전자 다양성 인간의 진화, 유전적 질환 개인 맞춤형 의학에 대한 새로운 이해와 연구가 가능하게 될 것으로 기대된다.

CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations

  • Jeong, Yong-Bok;Kim, Tae-Min;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.126-129
    • /
    • 2008
  • The robust identification and comprehensive profiling of copy number alterations (CNAs) is highly challenging. The amount of data obtained from high-throughput technologies such as array-based comparative genomic hybridization is often too large and it is required to develop a comprehensive and versatile tool for the detection and visualization of CNAs in a genome-wide scale. With this respective, we introduce a software framework, CGHscape that was originally developed to explore the CNAs for the study of copy number variation (CNV) or tumor biology. As a standalone program, CGHscape can be easily installed and run in Microsoft Windows platform. With a user-friendly interface, CGHscape provides a method for data smoothing to cope with the intrinsic noise of array data and CNA detection based on SW-ARRAY algorithm. The analysis results can be demonstrated as log2 plots for individual chromosomes or genomic distribution of identified CNAs. With extended applicability, CGHscape can be used for the initial screening and visualization of CNAs facilitating the cataloguing and characterizing chromosomal alterations of a cohort of samples.

Copy Number Variations in the Human Genome: Potential Source for Individual Diversity and Disease Association Studies

  • Kim, Tae-Min;Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2008
  • The widespread presence of large-scale genomic variations, termed copy number variation (CNVs), has been recently recognized in phenotypically normal individuals. Judging by the growing number of reports on CNVs, it is now evident that these variants contribute significantly to genetic diversity in the human genome. Like single nucleotide polymorphisms (SNPs), CNVs are expected to serve as potential biomarkers for disease susceptibility or drug responses. However, the technical and practical concerns still remain to be tackled. In this review, we examine the current status of CNV DBs and research, including the ongoing efforts of CNV screening in the human genome. We also discuss the characteristics of platforms that are available at the moment and suggest the potential of CNVs in clinical research and application.

단백질 상호작용 네트워크를 통한 유전체 단위반복변이와 트랜스유전자 발현과의 연관성 분석 (Genome-Wide Association Study between Copy Number Variation and Trans-Gene Expression by Protein-Protein Interaction-Network)

  • 박치현;안재균;윤영미;박상현
    • 정보처리학회논문지D
    • /
    • 제18D권2호
    • /
    • pp.89-100
    • /
    • 2011
  • 인간 유전체에 존재하는 유전적 구조 변이(genetic structural variation) 중 하나인 유전체 단위반복변이(Copy Number Variation, CNV)은 유전자의 기능 발현과 밀접한 관련이 있다. 특히 특정 유전 질병이 있는 사람들을 대상으로 CNV와 유전자발현의 관계를 밝히는 연구가 계속 진행되고 있지만, 정상인 유전체에 대한 CNV의 기능적 분석은 아직 활발히 이루어지고 있지 않다. 본 논문에서는 다수의 정상인 샘플에서 찾아낸 공통된 CNV에 대하여 유전자들과의 기능적 관계를 유전자의 분자적 위치와 상관없이 밝힐 수 있는 분석 방법을 제시한다. 이를 위해 서로 다른 이질적인 생물학데이터를 통합하는 방법을 제시하고 공통된 CNV와 유전자와의 연관성을 분자적 위치와 상관없이 계산할 수 있는 새로운 방법을 제시한다. 제안된 방법의 유의성을 보이기 위해서 유전자 온톨로지 (Gene Ontology) 데이터베이스를 이용한 다양한 검증 실험들을 수행하였다. 실험결과 새롭게 제안된 연관성 측정방법은 유의성이 있으며 공통된 CNV와 강한 연관성을 갖는 유전적 기능의 후보들을 시스템적으로 제시할 수 있는 것으로 나타났다.

VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

  • Kim, HyoYoung;Sung, Samsun;Cho, Seoae;Kim, Tae-Hun;Seo, Kangseok;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1691-1694
    • /
    • 2014
  • Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

Genome Architecture and Its Roles in Human Copy Number Variation

  • Chen, Lu;Zhou, Weichen;Zhang, Ling;Zhang, Feng
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.136-144
    • /
    • 2014
  • Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

Comparison of Methods for Detecting and Quantifying Variation in Copy Numbers of Duplicated Genes

  • Jeon, Jin-Tae;Ahn, Sung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.1037-1046
    • /
    • 2009
  • Copy number variations(CNVs) are known as one of the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing real-time polymerase chain reaction(PCR), invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed. PCR followed by a quantitative oligonucleotide ligation assay(qOLA) was developed for quantifying CNVs. The aim of this study was to compare the two methods for detecting and quantifying the CNVs of duplicated gene: the published pyrosequencing assay(pyro_CNV) and the newly developed qOLA_CNV. The accuracy and precision of the assay were evaluated for porcine KIT, which was selected as a model locus. Overall, the root mean squares(RMSs) of bias and standard deviation of qOLA_CNV were 2.09 and 0.45, respectively. These values are less than half of those of pyro CNV.