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Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations 
(CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. 
Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In 
this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, 
including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA 
recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors 
and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the 
high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome 
architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis 
and human genomic instability.
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Introduction

Genetic mutations have been known as one of the key 
factors in the pathogenesis of human diseases. Besides the 
well-known single-nucleotide variants, it has been shown that 
the large-scale genomic variants also make a great contribution 
to human health. ‘Genomic disorders’ are human diseases 
caused by relatively large genomic rearrangements [1]. Such 
large-scale genomic variants (named copy number variation 
[CNV]) can also be frequent in human populations [2, 3]. 
CNV involves DNA segments larger than 1 kb and exhibits 
variable copy numbers among individuals, comprising 
deletions and duplications/insertions [4, 5]. In the past 10 
years, CNV has been found to play an important role in both 
sporadic Mendelian disorders and complex diseases. Previous 
studies have reported that CNV can be mediated by multiple 
molecular mechanisms involving various genomic features. 
Here, we focus on CNV mutagenesis and review the 
involvement of human genome architecture in CNV instability 
and the underlying molecular mechanisms.

Non-allelic Homologous Recombination 
between Human Genomic Repeats
Genomic disorders and low-copy repeats

Large-scale genomic changes in the human genome can be 
associated with human diseases. Such clinical conditions 
resulting from human genome architecture are termed 
‘genomic disorders’ [1]. The structural features, such as 
genomic repeats, can provide substrates for homologous 
recombination and induce genomic rearrangements and 
genomic disorders.

Stankiewicz and Lupski [6] defined region-specific low- 
copy repeats (LCRs) as paralogous genomic segments 
spanning 10–400 kb of genomic DNA and sharing ≥95%–
97%  sequence identity. The non-allelic homologous recom-
bination (NAHR) between directly oriented LCRs can gener-
ate microdeletions and microduplications of megabases in 
size, which are frequently associated with genomic disorders 
(Fig. 1). For example, the 22q11.2 deletion syndrome is a 
well-investigated disorder caused by microdeletions between 
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Fig. 1. The non-allelic homologous recombination (NAHR) events 
between paired low-copy repeats (LCRs)/segmental duplications 
(SDs) [1]. Paired LCRs/SDs are depicted as bold arrows (red and 
blue) with the orientation indicated by arrowheads. Capital letters 
near the LCRs/SDs refer to the flanking unique sequences, while 
the same letter on different lines indicates the homologues on the 
other strand. Dashed crossed lines represent a homologous 
recombination event. (A) The NAHR event between reversely 
oriented LCRs/SDs can cause inversion, a copy-neutral structural 
variation. (B) The inter-chromatid NAHR events between directly 
oriented LCRs/SDs result in deletions and duplications. (C) The 
intra-chromatid NAHR events between directly oriented LCRs/SDs 
can generate deletions and ring-shaped DNA segments that will be
lost in subsequent cell divisions.

the paired LCRs in human 22q11.2, which deletes one copy 
of TBX1, CRKL, MAPK1, and several additional genes [7-10]. 
In addition to microdeletions, microduplications can also 
manifest as genomic disorders. The 1.4-Mb microdupli-
cation involving the PMP22 gene in human 17p12 can lead to 
CMT1A, which is a classical model for disease resulting from 
gene dosage effects [11, 12].

Segmental duplication and NAHR

Genomic repeats play a significant role in human evolu-
tion and have a strong association with genomic CNVs [6, 
13-15]. In 2001, Eichler [16] initially conducted a systema-
tically bioinformatic analysis for such low-copy genomic 
repeats and defined them as segmental duplications (SDs), 
which have a high degree of sequence identity (＞90%–95%) 
and large genomic sizes (1–100 kb). After that, Bailey et al. 
[17] further performed a whole-genome assembly com-
parison to detect SDs with pair-wise alignments ≥ 90% and 
≥ 1 kb in the human genome. In addition to human SDs, the 
subsequent analyses also identified the SD architecture in 

the genomes of other primates, including chimpanzee, gorilla, 
and orangutan, and even in the mouse genome [17-20], all of 
which have been archived in the online database of the 
University of California Santa Cruz (UCSC) Genome Brow-
ser (http://genome.ucsc.edu/).

LCR/SD is a very important category of DNA architecture 
in the human genome. It has been found that they are 
associated with duplicated genes and pseudogenes [21], 
co-localize and overlap with Alu elements and CNV [22, 23], 
and play an important role in genome evolution [24-26]. 
LCR/SD pairs, acting as substrates, are thought to be a key 
factor in triggering NAHR events and causing CNV 
mutations [4, 27-32]. 

Generally, reversely oriented SDs can align and subse-
quently crossover with each other via NAHR, resulting in 
copy-neutral inversions of the flanking DNA fragments (Fig. 
1A). Similarly, NAHR events between direct SD pairs can 
cause CNVs. Based on the different positions of SD pairs, 
different types of CNVs occur. Duplications or deletions take 
place in NAHR events between different chromatids (inter- 
chromatid) (Fig. 1B), while only deletions occur in NAHR on 
the same chromatid (intra-chromatid) (Fig. 1C). 

Based on the observations in specific pathogenic loci, SD 
properties (including homology length, distance, and se-
quence similarity) were shown to affect the incidence of 
NAHR [33]. In a recent study on common CNVs in human 
populations, it was found that SD length and inter-SD 
distance were the major SD properties involved in NAHR 
frequency [34]. A model of chromosomal compression/ex-
tension/looping has also been proposed for homology mis- 
pairing in NAHR [34].

High-copy repeats in CNV instability

The genomic repeats representing DNA primary struc-
tures can be divided into LCR/SD and high-copy repeats. 
Compared to LCR/SD, high-copy repeats constitute a great 
portion of the human genome. Interspersed repeats are the 
most common type of high-copy repeats, which cover over 
44% of the human genome [35]. One of the major classes of 
interspersed repeats is the retrotransposon, including short 
interspersed elements (SINEs), long interspersed elements 
(LINEs), and endogenous retroviruses (ERVs).

SINEs are short DNA sequences (100–400 bp in length) 
with an internal (mobile) polymerase III promoter [15], 
making up about 11% of the human genome [36]. The most 
common SINEs are Alu elements, which burst out in the 
evolution of primates [37]. Moreover, Alu elements play an 
important role in disease, such as breast cancer, Ewing's 
sarcoma, familial hypercholesterolemia, and so on [38]. In 
2008, Kim et al. [22] found a strong association between Alu 
elements and old SDs. By means of NAHR, Alu elements 



138 www.genominfo.org

L Chen, et al. Genome Architecture and Copy Number Variation

Fig. 2. Repeat-induced DNA replication errors and copy number 
variation (CNV) formation. The straight lines depict single DNA 
strands, and the solid arrows (red and blue) represent genomic 
repeats. The dashed lines indicate newly synthesized DNA strands.
During DNA replication, adjacent repeats could form DNA second-
ary structures (such as hairpin) that consequently result in replication
fork stalling. Then, CNVs are generated via DNA template switch-
ing. For example, (1) jumping over the secondary structures and 
restarting DNA replication lead to deletions and (2) switching to 
a new template (shown in green lines) and switching back result 
in duplications of the green DNA segment.

contribute to the formation of CNVs, especially deletions 
[39-43].

The most classic repeats in LINEs are the LINE-1 (L1) 
elements, which are 6–8 kb in length [44]. Covering about 
17% of the human genome, L1 elements can elevate genomic 
instability, provide resources for NAHR [39-41, 45, 46], and 
cause human diseases [47-50].

In the human genome, there exist at least 50,000 copies of 
ERVs [51], which are defined as human endogenous retro-
viruses (HERVs), covering about 4.9% of human DNA 
sequences [21]. Via the NAHR mechanism, HERVs were 
found to induce large deletions and cause hypotonia and 
motor, language, and cognitive delays [52, 53]. Intriguingly, 
a series of studies show that there is a strong association 
between HERVs and CNVs in the region of AZFa, a 
well-known locus related to male infertility [54-57].

Repeat-Induced DNA Replication Error and 
CNV Mutation

As discussed above, repeat-mediated NAHR is one of the 
major mutational mechanisms for CNV formations. In these 
recombination-based events, paired repeats in direct 

orientation contribute to CNV instability and disease traits. 
However, is it the only way for the genomic repeats to induce 
CNV mutations? The recent investigation of DNA repli-
cation-based mechanisms provides novel insights into 
repeat-mediated CNV instability.

Inverted repeats involved in CNV instability

Genomic repeats, especially inverted repeats (IRs), can 
cause DNA replication error and induce CNV formation. IRs, 
sharing high sequence similarity in adjacent loci, are found 
to align or crossover with each other and form specific DNA 
secondary structures, such as cruciform structures, during 
DNA replication [58]. Formation of such secondary struc-
tures can cause DNA replication fork stalling, and later, 
jumping into the wrong locus to continue replicating (Fig. 
2). This mechanism of triggering replication errors sub-
sequently results in genomic rearrangements and CNV 
mutations [24]. 

IRs induce complex CNVs by replication errors

During DNA replication, IRs could form DNA secondary 
structures, which will induce replication fork stalling. 
Template switching and replication resumption further 
result in CNV mutations (Fig. 2). Notably, replication- 
associated events usually lead to complex CNVs, which 
include the combined segments of deletions and dupli-
cations. As was reported, Chen et al. [59] identified three 
complex CNVs that could be explained by a model of serial 
replication slippage (SRS). In this model, IRs have the 
potential to induce SRS and cause CNV mutations.

IRs can induce complex CNVs, as observed in the MECP2 
locus in chromosome Xq28 and the PLP1 locus in chromo-
some Xq22 [60]. To elucidate the mechanisms of complex 
CNVs in the PLP1 locus, Hastings et al. [61] found both 
microhomology and IRs at the breakpoints. They proposed 
that both breakage of replication forks and the IR-mediated 
aberrant repair process can result in complex CNVs. This 
model was termed ‘microhomology-mediated break-induced 
replication,’ which was used to explain the formation of the 
complex CNVs involving individual genes or even single 
exons [62].

Self-chains in CNV formation

The aforementioned SDs are long (＞1 kb) and LCRs in 
the human genome. Besides SDs, self-chains (SCs) are 
another type of short LCRs, which were previously analyzed 
and mapped via self-alignment in the human genome 
utilizing BLASTZ [63, 64]. SCs are short in length (91% of 
which range from 150 bp to 1 kb in size) [14]. Furthermore, 
SCs have a limited number of matched alignments in the 
human genome. Thus, SCs represent a distinct category of 
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Fig. 3. The DNA replication timing profile of human lymphoblastoid
cells. The data of human chromosome 4, which were obtained from
Koren et al. [75], are shown. The blue lines show the replication
timing, high values of which indicate that DNA replicates early in
these regions, and vice versa.

human short LCRs.
In 2013, Chen et al. [65] studied deletion CNVs in the 

NRXN1 gene and its flanking regions. After mapping and 
analyzing the breakpoints of 32 deletions, they found a 
significant bias that minus SCs (i.e., paired SCs in the 
inverted orientation) were overrepresented in the vicinity of 
deletion breakpoints in the NRXN1 region. Furthermore, 
they claimed that the SCs can increase genomic instability 
and cause deletions via DNA replication errors. Their work 
contributes to the exploration on SC-mediated CNVs.

To perform a genomewide analysis on the contribution of 
SCs to human CNV instability, Zhou et al. [14] plotted the 
numbers of SC regions with different orientations in the 
entire human genome. After masking the SDs and gaps in 
the human genome, utilizing the germline CNVs in human 
populations and the somatic CNVs in various cancer 
genomes, they observed a significant biased distribution of 
CNV breakpoints to SC regions, which indicated that SC- 
mediated secondary structures may induce DNA replication 
errors and potentially generate different types of CNVs, such 
as deletions and duplications. In this case, SCs represent a 
new genomic architecture for the underlying regional 
susceptibility to genomic instability, further giving rise to 
CNVs.

DNA repair and nonhomologous end-joining

While DNA double-strand breaks (DSBs) occur, nonho-
mologous end-joining (NHEJ) is one of the molecular 
mechanisms for repairing DSBs and maintaining genome 
integrity. Once a DSB is detected, the broken DNA ends are 
bridged and modified by the enzyme machinery. After that, 
the final ligation is needed for DNA repair. Unlike NAHR, 
NHEJ can take place without any homology as the substrate. 
Notably, deletions or insertions of several base pairs are 
usually brought to the joint point. More mechanistic details 
of NHEJ are provided in some previous works [66-68].

DNA Replication Dynamics in CNV Mutage-
nesis

In addition to the aforementioned genomic features, some 
high-order genome organizations might contribute to 
genome instability. New observations in the human genome 
showed that the DNA mutation rate is associated with DNA 
replication timing. Stamatoyannopoulos et al. [69] found 
that the human point mutation rate is markedly increased in 
genomic regions of late replication. This correlation indi-
cates that DNA replication timing, as an important feature of 
replication dynamics, is involved in genomic instability and 
enlightens the investigation on the relationship of repli-
cation timing and CNV instability.

Replication timing as a high-order genomic feature

DNA replication takes place at replication forks following 
a fixed way [70]. In the human genome, the segments of 
chromosomes replicate in a temporal order [71], and the 
whole genome is spatially segregated by replication zones of 
different organizations. With some replicons in one spatial 
compartmentalization of chromatin fired synchronously, 
this chromosomal unit shares the same replication timing, 
termed the ‘replication domain.’ Therefore, the genome 
consists of several replication domains with different 
replication timing and the timing transition regions.

Replication timing can be measured by two distinct 
methods, based on current genome technologies [72-74]. 
One method is to label the newly replicated DNA with 
chemically tagged nucleotides. Then, the DNA will be 
isolated from cells at various times during S phase by 
immune-precipitation or density fractionation. In the other 
method, since DNA segments that replicate earlier accu-
mulate more copies than those that replicate late in most 
cells—the DNA content of a region simply reflects the 
replication timing. After being classified by florescence- 
activated cell sorting, the DNAs extracted from S phase and 
G1 phase cells, respectively, are compared by next-genera-
tion sequencing or microarray technologies. By either way, a 
replication timing profile can be generated (Fig. 3) [75].

Based on the timing profiles, a lot of progress has been 
made on understanding the replication program and its 
relationship with other genome architectures. Recent find-
ings indicate significant links between replication timing 
and the features of primary genomic structures [76]. The 
genomic regions where DNA replicates earlier usually have 
more genes, fewer LINEs, and higher GC content [77, 78]. 
Moreover, it is noticed that DNA replication timing corre-
lates with transcription [79-81]. Expressed genes replicate 
earlier, while repressed genes replicate late. Although this 
correlation shows a discrepancy between multicellular and 
single-celled organisms, it is worth noting that such works 
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indeed reveal the striking association of replication timing 
and transcriptional activity in humans [77, 82, 83]. More-
over, recent findings show that replication timing strongly 
correlates with three-dimensional chromatin structures 
[84]. In Hi-C data, it has been observed that chromatin is 
organized into two separate compartments. Remarkably, 
DNA that resides in close spatial structures replicates in near 
time, and chromatin that interacts between two compart-
ments is exactly at the timing transition regions. This 
observation suggests replication timing as an independent 
advanced genomic feature.

Replication timing and CNV instability in human 
populations and cancers

The relationship of DNA replication timing and genomic 
instability, which is involved in genomic mutation and 
human disease, is what people are most concerned about. As 
mentioned above, human mutation rates, based on evolu-
tionary divergence and single-nucleotide polymorphism 
frequency, are increased in late-replicated regions [69]. 
Koren et al. [75] generated a high-resolution timing profile of 
the human genome and investigated the relationship 
between DNA replication timing and point mutations. In 
accordance with the previous discovery, this association was 
also observed and proved to be much stronger.

How is CNV related to replication timing? Recent studies 
showed some distinct but multi-dimensional relationships 
between CNVs and replication timing. Based on the 
duplication hotspots conserved between two species of 
Drosophila, Cardoso-Moreira et al. [85] explored the roles of 
replication timing in genomic instability. They found that 
Drosophila duplication hotspots were enriched in late-repli-
cated regions, unlike the aforementioned sequences of high 
sequence identity in the human genome. However, in spite of 
the association observed in Drosophila, the situation seems to 
be more complicated in mammalian genomes. In the study of 
Koren et al. [75], the relationship between early/late 
replication timing and CNV mutation was also investigated. 
The CNVs, mediated by different mechanisms, showed 
divergent patterns, suggesting a multi-dimensional inter-
action between CNVs and replication timing.

In addition to the observations in human populations, 
recent findings have also discovered the relationship of 
genomic reorganization and the subsequently generated 
genetic variation during cell fate changes. Lu et al. [86] have 
investigated the impact of altered replication timing on the 
CNV landscape during reprogramming. Approximately 40% 
of the human genome changes with regard to replication 
timing between human induced pluripotent stem cells 
(iPSCs) and their parent fibroblasts. Intriguingly, the CNV 
distribution shows a correlation with the changed timing 

profile. In particular, CNV gains tend to be located in the 
genomic regions that switch to replicate earlier. This 
correlation is conserved among different reprogramming 
methods.

Compared with cell fate changes, replication timing is 
disrupted in many disease states, including cancer [87]. It 
has been noticed that numerous alterations to the repli-
cation program take place during carcinogenesis. One of the 
changes is the aberrant asynchronous replication of loci that 
replicate synchronously in normal cells. This phenomenon 
exists in not only cancer but also noncancerous cells [88-90]. 
This abnormal replication program apparently has a notable 
impact on genomic stability and thus increases the frequency 
of chromosomal rearrangements and CNVs. Recent findings 
have indicated that aberrant DNA replication timing is 
involved in changes in gene expression, epigenetic modi-
fications, and an increased CNV mutation frequency [91, 
92]. An analysis of 331,724 somatic copy number alterations 
(SCNAs) has shown that SCNAs increase in late-replicating 
regions among cells of different cancer types. Like the 
findings in iPSCs, the SCNA distribution is related to 
replication timing in tumor cells. In particular, amplification 
boundaries tend to be located in early-replicated regions, 
whereas deletion boundaries are more likely to reside in 
late-replicated regions [93].

Integrated replication dynamic related with CNV 
instability 

In the study of Koren et al. [75], point mutations and 
CNVs showed different patterns in their correlations with 
replication timing. These observations may reflect the 
distinct mutational mechanisms between these two types of 
genomic variants and suggest complex effects of DNA 
replication on CNV instability. We hypothesized that inte-
grated replication dynamics, which are not just early/late 
replication timing, contribute to CNV mutation. It has been 
reported that dividing the genome into early/late replication 
timing alone does not give the entire characteristics of DNA 
replication fork dynamics [72]. Actually, the timing transi-
tional regions represent the interactions of two spatially 
dependent chromatin compartments, which are DNA 
segments with low rates of replication fork progression. 
Notably, slower fork speed and increased fork stalling have 
been found to be associated with cancer cells and result in 
CNV mutations [94]. Actually, Chen et al. [95] have con-
ducted a statistical method, estimating replication dyna-
mics, and observed its significant association with CNV 
instability. Replication dynamics may be used as a measure 
of the progress of genome replication and regional 
replication stress and provides novel insights into the roles 
of DNA replication in CNV mutagenesis.
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Conclusion

Human genomic repeats play an important role in CNV 
mutation, genomic disorders, and genome evolution. Both 
low-copy genomic repeats (including LCRs and SDs) and 
high-copy repeats (including Alu, LINEs, and HERVs) can 
induce CNV formation via classical DNA recombination- 
based mechanisms, such as NAHR. Furthermore, paired 
repeats (especially those in the inverted orientation) are 
even more crucial as substrates to form DNA secondary 
structures and cause DNA replication fork stalling and 
replication stress. This will induce DNA replication errors 
and subsequently generate CNV mutations. Besides the 
primary structural features (e.g., the organization of repeat 
sequences in the human genome) and repeat-mediated 
secondary DNA structures, higher-order genomic archi-
tecture (such as replication timing) is also involved in CNV 
instability. Further investigation of the role of DNA 
replication dynamics in CNV mutagenesis will reveal more 
mutational mechanisms underlying genomic disorders and 
genome evolution.
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