DOI QR코드

DOI QR Code

Copy Number Variations in the Human Genome: Potential Source for Individual Diversity and Disease Association Studies

  • Kim, Tae-Min (Department of Microbiology, The Catholic University of Korea) ;
  • Yim, Seon-Hee (Integrated Research Center for Genome Polymorphism, The Catholic University of Korea) ;
  • Chung, Yeun-Jun (Department of Microbiology, The Catholic University of Korea)
  • Published : 2008.03.31

Abstract

The widespread presence of large-scale genomic variations, termed copy number variation (CNVs), has been recently recognized in phenotypically normal individuals. Judging by the growing number of reports on CNVs, it is now evident that these variants contribute significantly to genetic diversity in the human genome. Like single nucleotide polymorphisms (SNPs), CNVs are expected to serve as potential biomarkers for disease susceptibility or drug responses. However, the technical and practical concerns still remain to be tackled. In this review, we examine the current status of CNV DBs and research, including the ongoing efforts of CNV screening in the human genome. We also discuss the characteristics of platforms that are available at the moment and suggest the potential of CNVs in clinical research and application.

Keywords

References

  1. Aitman, T.J., R.Dong, T.J., Vyse, P.J., et al. (2006). Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439, 851-855. https://doi.org/10.1038/nature04489
  2. Barrett, M.T., Scheffer, A., Ben-Dor, A., et al. (2004). Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl. Acad. Sci. U. S. A 101, 17765-17770. https://doi.org/10.1073/pnas.0407979101
  3. Bennett, S.T., Barnes, C., Cox, A., Davies, L., and Brown, C. (2005). Toward the 1,000 dollars human genome. Pharmacogenomics 6, 373-382. https://doi.org/10.1517/14622416.6.4.373
  4. Bruce, S., Leinonen, R., Lindgren, C.M., Kivinen, K., Dahlman-Wright, K., Lipsanen-Nyman, M., Hannula-Jouppi, K., and Kere, J. (2005). Global analysis of uniparental disomy using high density genotyping arrays. J. Med. Genet. 42, 847-851. https://doi.org/10.1136/jmg.2005.032367
  5. Buckley, P.G., Mantripragada, K.K., Piotrowski, A., az de, S.T., and Dumanski, J.P. (2005). Copy-number polymorphisms: mining the tip of an iceberg. Trends Genet. 21, 315-317. https://doi.org/10.1016/j.tig.2005.04.007
  6. Check, E. (2005). Human genome: patchwork people. Nature 437, 1084-1086. https://doi.org/10.1038/4371084a
  7. Cheng, Z., Ventura, M., She, X., et al. (2005). A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88-93. https://doi.org/10.1038/nature04000
  8. Cho, C.S., Yim, S.H., Yoo, H.K., et al. (2008). Copy number variations associated with idiopathic autism identified by whole-genome array-CGH. Psychiatric Genetics in press.
  9. Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., and Pritchard, J.K. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75-81. https://doi.org/10.1038/ng1697
  10. Cooper, G.M., Nickerson, D.A., and Eichler, E.E. (2007). Mutational and selective effects on copy-number variants in the human genome. Nat. Genet. 39, S22-S29. https://doi.org/10.1038/ng2054
  11. de Smith, A.J., Tsalenko, A., Sampas, N., et al. (2007). Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum. Mol. Genet. 16, 2783-2794. https://doi.org/10.1093/hmg/ddm208
  12. Eichler, E.E. (2006). Widening the spectrum of human genetic variation. Nat. Genet. 38, 9-11. https://doi.org/10.1038/ng0106-9
  13. Fanciulli, M., Norsworthy, P.J., Petretto, E., et al. (2007). FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat. Genet. 39, 721-723. https://doi.org/10.1038/ng2046
  14. Fellermann, K., Stange, D.E., Schaeffeler, E., et al. (2006). A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am. J. Hum. Genet. 79, 439-448. https://doi.org/10.1086/505915
  15. Feuk, L., MacDonald, J.R., Tang, T., Carson, A.R., Li, M., Rao, G., Khaja, R., and Scherer, S.W. (2005). Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS. Genet. 1, e56. https://doi.org/10.1371/journal.pgen.0010056
  16. Freeman, J.L., Perry, G.H., Feuk, L., et al. (2006). Copy number variation: new insights in genome diversity. Genome Res. 16, 949-961. https://doi.org/10.1101/gr.3677206
  17. Friedman, J.I., Vrijenhoek, T., Markx, S., et al. (2008). CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol. Psychiatry. 13, 26126-26126.
  18. Gonzalez, E., Kulkarni, H., Bolivar, H., et al. (2005). The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307, 1434-1440. https://doi.org/10.1126/science.1101160
  19. Heidenblad, M., Lindgren, D., Veltman, J.A., Jonson, T., Mahlamäki, E.H., Gorunova, L., van Kessel, A.G., Schoenmakers, E.F., and Höglund, M. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 24, 1794-1801. https://doi.org/10.1038/sj.onc.1208383
  20. Hinds, D.A., Kloek, A.P., Jen, M., Chen, X., and Frazer, K.A. (2006). Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82-85. https://doi.org/10.1038/ng1695
  21. Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., and Lee, C. (2004). Detection of large-scale variation in the human genome. Nat. Genet. 36, 949-951. https://doi.org/10.1038/ng1416
  22. International HapMap Consortium. (2005). A haplotype map of the human genome. Nature 437, 1299-1320. https://doi.org/10.1038/nature04226
  23. Istrail, S., Sutton, G.G., Florea, L., et al. (2004). Whole-genome shotgun assembly and comparison of human genome assemblies. Proc. Natl. Acad. Sci. U. S. A 101, 1916-1921. https://doi.org/10.1073/pnas.0307971100
  24. Jakobsson, J., Ekstrom. L., Inotsume, N., Garle, M., Lorentzon, M., Ohlsson, C., Roh, H.K., Carlstrom, K., and Rane, A. (2006). Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J. Clin. Endocrinol. Metab. 91, 687-693. https://doi.org/10.1210/jc.2005-1643
  25. Kirov, G., Gumus, D., Chen, W., et al. (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum. Mol. Genet. 17, 458-465. https://doi.org/10.1093/hmg/ddm323
  26. Komura, D., Shen, F., Ishikawa, S., et al. (2006). Genomewide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res. 16, 1575-1584. https://doi.org/10.1101/gr.5629106
  27. Lupski, J.R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417-422. https://doi.org/10.1016/S0168-9525(98)01555-8
  28. McCarroll, S.A., and Altshuler, D.M. (2007). Copy-number variation and association studies of human disease. Nat. Genet. 39, S37-S42. https://doi.org/10.1038/ng2080
  29. McCarroll, S.A., Hadnott, T.N., Perry, G.H., et al. (2006). Common deletion polymorphisms in the human genome. Nat. Genet. 38, 86-92. https://doi.org/10.1038/ng1696
  30. McKinney, C., Merriman, M.E., Chapman, P.T., et al. (2008). Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann. Rheum. Dis. 67, 409-413. https://doi.org/10.1136/ard.2007.075028
  31. Mei, R., Galipeau, P.C., Prass, C., Berno, A., Ghandour, G., Patil, N., Wolff, R.K., Chee, M.S., Reid, B.J., and Lockhart, D.J. (2000). Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res. 10, 1126-1137. https://doi.org/10.1101/gr.10.8.1126
  32. Mills, R.E., Luttig, C.T., Larkins, C.E., Beauchamp, A., Tsui, C., Pittard, W.S., and Devine, S.E. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182-1190. https://doi.org/10.1101/gr.4565806
  33. Moessner, R., Marshall, C.R., Sutcliffe, J.S., et al. (2007). Contribution of SHANK3 mutations to autism spectrum disorder. Am. J. Hum. Genet. 81, 1289-1297. https://doi.org/10.1086/522590
  34. Perry, G.H., Dominy, N.J., Claw, K.G., et al. (2007). Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256-1260. https://doi.org/10.1038/ng2123
  35. Przeworski, M., Hudson, R.R., and Di, R.A. (2000). Adjusting the focus on human variation. Trends Genet. 16, 296-302. https://doi.org/10.1016/S0168-9525(00)02030-8
  36. Redon, R., Ishikawa, S., Fitch, K.R., et al. (2006). Global variation in copy number in the human genome. Nature 444, 444-454. https://doi.org/10.1038/nature05329
  37. Reymond, A., Henrichsen, C.N., Harewood, L., and Merla, G. (2007). Side effects of genome structural changes. Curr. Opin. Genet. Dev. 17, 381-386. https://doi.org/10.1016/j.gde.2007.08.009
  38. Sachidanandam, R., Weissman, D., Schmidt, S.C., et al. (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928-933. https://doi.org/10.1038/35057149
  39. Sebat, J., Lakshmi, B., Troge, J., et al. (2004). Large-scale copy number polymorphism in the human genome. Science 305, 525-528. https://doi.org/10.1126/science.1098918
  40. Sharp, A.J., Locke, D.P., McGrath, S.D., et al. (2005). Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78-88. https://doi.org/10.1086/431652
  41. Stankiewicz, P., and Lupski, J.R. (2002). Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74-82. https://doi.org/10.1016/S0168-9525(02)02592-1
  42. Stranger, B.E., Forrest, M.S., Dunning, M., et al. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848-853. https://doi.org/10.1126/science.1136678
  43. Tuzun, E., Sharp, A.J., Bailey, J.A., et al. (2005). Fine-scale structural variation of the human genome. Nat. Genet. 37, 727-732. https://doi.org/10.1038/ng1562
  44. Warburton, D. (1991). De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 49, 995-1013.
  45. Wong, K.K., deLeeuw, R.J., Dosanjh, N.S., et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. Am. J. Hum. Genet. 80, 91-104. https://doi.org/10.1086/510560
  46. Yang, Y., Chung, E.K., Wu, Y.L., et al. (2007). Gene copynumber variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet. 80, 1037-1054. https://doi.org/10.1086/518257

Cited by

  1. Personal Genomics, Bioinformatics, and Variomics vol.6, pp.4, 2008, https://doi.org/10.5808/GI.2008.6.4.161
  2. Comparison of Normalization Methods for Defining Copy Number Variation Using Whole-genome SNP Genotyping Data vol.6, pp.4, 2008, https://doi.org/10.5808/GI.2008.6.4.231
  3. Clinical implications of copy number variations in autoimmune disorders vol.30, pp.3, 2015, https://doi.org/10.3904/kjim.2015.30.3.294
  4. Copy number variation related disease genes vol.6, pp.2, 2018, https://doi.org/10.1007/s40484-018-0137-6