DOI QR코드

DOI QR Code

No Association between Copy Number Variation of the TCRB Gene and the Risk of Autism Spectrum Disorder in the Korean Population

  • Yang, So-Young (Intergrated Research Center for Genome Polymorphism) ;
  • Yim, Seon-Hee (Intergrated Research Center for Genome Polymorphism) ;
  • Hu, Hae-Jin (Intergrated Research Center for Genome Polymorphism) ;
  • Kim, Soon-Ae (Department of Pharmacology, The Eulji University of School of Medicine) ;
  • Yoo, Hee-Jeong (Department of Psychiatry, Seoul National University Bundang Hospital) ;
  • Chung, Yeun-Jun (Intergrated Research Center for Genome Polymorphism)
  • Accepted : 2010.06.17
  • Published : 2010.06.30

Abstract

Although autism spectrum disorder (ASD) has been thought to have a substantial genetic background, major contributing genes have yet to be identified or successfully replicated. Immunological dysfunction has been suggested to be associated with ASD, and T cell-mediated immunity was considered important for the development of ASD. In this study, we analyzed 163 ASD subjects and 97 normal controls by genomic quantitative PCR to evaluate the association between the copy number variation of the 7q34 locus, harboring the TCRB gene, and ASDs. As a result, there was no significant difference of the frequency distribution of TCRB copy numbers between ASD cases and normal controls. TCRB gene copy numbers ranged from 0 to 5 copies, and the frequency distribution of each copy number was similar between the two groups. The proportion of the individuals with <2 copies of TCRB was 52.8% (86/163) in ASD cases and 57.1% (52/91) in the control group (p=0.44). The proportion of individuals with >2 copies of TCRB was 11.7% (19/163) in ASD cases and 12.1% (11/91) in the control group (p=0.68). After the effects of sex were adjusted by logistic regression, ORs for individuals with <2 copies or >2 copies showed no significant difference compared with the diploid copy number as reference (n=2). Although we could not see the positive association, our results will be valuable information for mining ASD-associated genes and for exploring the role of T cell immunity further in the pathogenesis of ASD.

Keywords

References

  1. Arking, D.E., Cutler, D.J., Brune, C.W., Teslovich, T.M., West, K., Ikeda, M., Rea, A., Guy, M., Lin, S., Cook, E.H., and Chakravarti, A. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160-164. https://doi.org/10.1016/j.ajhg.2007.09.015
  2. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., and Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25, 63-77. https://doi.org/10.1017/S0033291700028099
  3. Boulanger, L.M., Huh, G.S., and Shatz, C.J. (2001). Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr. Opin. Neurobiol. 11, 568-578. https://doi.org/10.1016/S0959-4388(00)00251-8
  4. Christian, S.L., Brune, C.W., Sudi, J., Kumar, R.A., Liu, S., Karamohamed, S., Badner, J.A., Matsui, S., Conroy, J., McQuaid, D., Gergel, J., Hatchwellm, E., Gilliam, T.C., Gershon, E.S., Nowak, N.J., Dobyns, W.B., and Cook, E.H. Jr. (2008). Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol. Psychiatry 63, 1111-1117. https://doi.org/10.1016/j.biopsych.2008.01.009
  5. Cohly, H.H., and Panja, A. (2005). Immunological findings in autism. Int. Rev. Neurobiol. 71, 317-341. https://doi.org/10.1016/S0074-7742(05)71013-8
  6. Cook, E.H. Jr., and Scherer, S.W. (2008). Copy-number variations associated with neuropsychiatric conditions. Nature 455, 919-923. https://doi.org/10.1038/nature07458
  7. Currier, J.R., Deulofeut, H., Barron, K.S., Kehn, P.J., and Robinson, M.A. (1996). Mitogens, superantigens, and nominal antigens elicit distinctive patterns of TCRB CDR3 diversity. Hum. Immunol. 48, 39-51. https://doi.org/10.1016/0198-8859(96)00076-6
  8. Dauwerse, J.G., Ruivenkamp, C.A., Hansson, K., Marijnissen, G.M., Peters, D.J., Breuning, M.H., and Hilhorst- Hofstee, Y. (2010). A complex chromosome 7q rearrangement identified in a patient with mental retardation, anxiety disorder, and autistic features. Am. J. Med. Genet. A 152A, 427-433. https://doi.org/10.1002/ajmg.a.33203
  9. Denney, D.R., Frei, B.W., and Gaffney, G.R. (1996). Lymphocyte subsets and interleukin-2 receptors in autistic children. J. Autism. Dev. Disord. 26, 87-97. https://doi.org/10.1007/BF02276236
  10. Folstein, S.E., and Rosen-Sheidley, B. (2001). Genetics of autism: complex aetiology for a heterogeneous disorder. Nat. Rev. Genet. 2, 943-955. https://doi.org/10.1038/35103559
  11. Freeman, J.L., Perry, G.H., Feuk, L., Redon, R., McCarroll, S.A., Altshuler, D.M., Aburatani, H., Jones, K.W., Tyler-Smith, C., Hurles, M.E., Carter, N.P., Scherer, S.W., and Lee, C. (2006). Copy number variation: new insights in genome diversity. Genome Res. 16, 949-961. https://doi.org/10.1101/gr.3677206
  12. Gu, W., and Lupski, J.R. (2008). CNV and nervous system diseases--what's new? Cytogenet. Genome Res. 123, 54-64. https://doi.org/10.1159/000184692
  13. Gupta, S. (2000). Immunological treatments for autism. J. Autism Dev. Disord. 30, 475-479. https://doi.org/10.1023/A:1005568027292
  14. Klauck, S.M. (2006). Genetics of autism spectrum disorder. Eur. J. Hum. Genet. 14, 714-720. https://doi.org/10.1038/sj.ejhg.5201610
  15. Marshall, C.R., Noor, A., Vincent, J.B., Lionel, A.C., Feuk, L., Skaug, J., Shago, M., Moessner, R., Pinto, D., Ren, Y., Thiruvahindrapduram, B., Fiebig, A., Schreiber, S., Friedman, J., Ketelaars, C.E., Vos, Y.J., Ficicioglu, C., Kirkpatrick, S., Nicolson, R., Sloman, L., Summers, A., Gibbons, C.A., Teebi, A., Chitayat, D., Weksberg, R., Thompson, A., Vardy, C., Crosbie, V., Luscombe, S., Baatjes, R., Zwaigenbaum, L., Roberts, W., Fernandez, B., Szatmari, P., and Scherer, S.W. (2008). Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477-488. https://doi.org/10.1016/j.ajhg.2007.12.009
  16. McCauley, J.L., Li, C., Jiang, L., Olson, L.M., Crockett, G., Gainer, K., Folstein, S.E., Haines, J.L., and Sutcliffe, J.S. (2005). Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med. Genet. 6, 1.
  17. Merikangas, A.K., Corvin, A.P., and Gallagher, L. (2009). Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends Genet. 25, 536-544. https://doi.org/10.1016/j.tig.2009.10.006
  18. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer S,W., and Hurles, M.E. (2006). Global variation in copy number in the human genome. Nature 444, 444-454. https://doi.org/10.1038/nature05329
  19. Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., Kalaydjieva, L., McCague, P., Dimiceli, S., Pitts, T., Nguyen, L., Yang, J., Harper, C., Thorpe, D., Vermeer. S., Young, H., Hebert. J., Lin, A., Ferguson, J., Chiotti, C., Wiese-Slater, S., Rogers,T., Salmon, B., Nicholas, P., Petersen, P.B., Pingree, C., McMahon, W., Wong, D.L., Cavalli-Sforza, L.L., Kraemer, H.C., and Myers, R.M. (1999). A genomic screen of autism: evidence for a multilocus etiology. Am. J. Hum. Genet. 65, 493-507. https://doi.org/10.1086/302497
  20. Rutter, M. (2005). Autism research: lessons from the past and prospects for the future. J. Autism Dev. Disord. 35, 241-257. https://doi.org/10.1007/s10803-004-2003-9
  21. Santangelo, S.L., and Tsatsanis, K. (2005). What is known about autism: genes, brain, and behavior. Am. J. Pharmacogenomics 5, 71-92.
  22. Schanen, N.C. (2006). Epigenetics of autism spectrum disorders. Hum. Mol. Genet. 15, 138-150. https://doi.org/10.1093/hmg/ddl213
  23. Sweeten, T.L., Bowyer, S.L., Posey, D.J., Halberstadt, G.M., and McDougle, C.J. (2003). Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112, 420. https://doi.org/10.1542/peds.112.5.e420
  24. Syken, J., and Shatz, C.J. (2003). Expression of T cell receptor beta locus in central nervous system neurons. Proc. Natl. Acad. Sci. 100, 13048-13053. https://doi.org/10.1073/pnas.1735415100
  25. Van Gent, T., Heijnen, C.J., and Treffers, P.D. (1997). Autism and the immune system. J. Child. Psychol. Psychiatry 38, 337-349. https://doi.org/10.1111/j.1469-7610.1997.tb01518.x
  26. Vargas, D.L., Nascimbene, C., Krishnan, C., Zimmerman, A.W., and Pardo, C.A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67-81. https://doi.org/10.1002/ana.20315
  27. Vorstman, J.A., Staal, W.G., van Daalen, E., van Engeland, H., Hochstenbach, P.F., and Franke, L. (2006). Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol. Psychiatry 11, 18-28. https://doi.org/10.1038/sj.mp.4001757
  28. Yim, S.H., Kim, T.M., Hu, H.J., Kim, J.H., Kim, B.J., Lee, J.Y., Han, B.G., Shin, S.H., Jung, S.H., and Chung, Y.J. (2010). Copy number variations in East-Asian population and their evolutionary and functional implications. Hum. Mol. Genet. 19, 1001-1008. https://doi.org/10.1093/hmg/ddp564
  29. Zhao, T.M., Whitaker, S.E., and Robinson, M.A. (1994). A genetically determined insertion/deletion related polymorphism in human T cell receptor beta chain (TCRB) includes functional variable gene segments. J. Exp. Med. 180, 1405-1414. https://doi.org/10.1084/jem.180.4.1405