• Title/Summary/Keyword: Coptisine

Search Result 20, Processing Time 0.017 seconds

Inhibitory Effects of Coptisine on Monoamine Oxidase Activity

  • Lee, Myung-Koo;Lee, Kyong-Soon;Kim, Hack-Seang;Hong, Seung-Soo;Ro, Jai-Seup
    • Natural Product Sciences
    • /
    • v.6 no.2
    • /
    • pp.70-72
    • /
    • 2000
  • The effects of coptisine on monoamine oxidase (EC 1.4.3.4; MAO) activity in mouse brain were investigated. Coptisine showed an inhibitory effect on MAO activity with a concentration-dependent manner. Coptisine exhibited 51.0% inhibition of MAO activity at $9\;{\mu}M$. The $IC_{50}$ value of coptisine was $8.7\;{\mu}M$. Coptisine inhibited MAO activity competitively with kynuramine as a substrate. The $K_i$ value of coptisine was $4.1\;{\mu}M$. These results indicate that coptisine functions to regulate the catecholamine content at biologically active sites.

  • PDF

Suppression of Human Breast Cancer Cell Metastasis by Coptisine in Vitro

  • Li, Jing;Qiu, Dong-Min;Chen, Shao-Hua;Cao, Su-Ping;Xia, Xue-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5747-5751
    • /
    • 2014
  • Background: Coptisine, an isoquinoline alkaloid extracted from Coptidis rhizoma, has many biological activities such as antidiabetic, antimicrobial and antiviral actions. However, whether coptisine exerts anti-cancer metastasis effects remains unknown. Materials and Methods: Effects of coptisine on highly metastatic human breast cancer cell MDA-MB-231 proliferation were evaluated by trypan blue assay and on cell adhesion, migration and invasion by gelatin adhesion, wound-healing and matrigel invasion chamber assays, respectively. Expression of two matrix metalloproteinases (MMPs), MMP-9, MMP-2 and their specific inhibitors tissue inhibitor of metalloproteinase 1 (TIMP-1) and tissue inhibitor of metalloproteinase 2 (TIMP-2) were analyzed by RT-PCR. Results: Coptisine obviously inhibited adhesion to an ECM-coated substrate, wound healing migration, and invasion through the matrigel in MDA-MB-231 breast cancer cells. RT-PCR revealed that coptisine reduced the expression of the ECM degradation-associated gene MMP-9 at the mRNA level, and the expression of TIMP-1 was upregulated in MDA-MB-231 cells, while the expression of MMP-2 and its specific inhibitor TIMP-2 was not affected. Conclusions: Taken together, our data showed that coptisine suppressed adhesion, migration and invasion of MDA-MB-231 breast cancer cells in vitro, the down-regulation of MMP-9 in combination with the increase of TIMP-1 possibly contributing to the anti-metastatic function. Coptisine might be a potential drug candidate for breast cancer therapy.

Isolation and Quantitative Determination of Berberine and Coptisine from Tubers of Corydalis ternata (들현호색으로부터 Berberine과 Coptisine의 분리 및 함량분석)

  • Lee, Hyang-Yi;Kim, Chong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.332-334
    • /
    • 1999
  • Corydalis Tuber has been used in traditional medicine for an analgesic, antispasmodic and gastric ulcers. For the quality control on this drug, isolation and quantitative determination of berberine and coptisine from Corydalis ternata Nakai (Papaveraceae) has been conducted by using HPLC method. Berberine and coptisine in quarternary alkaloidal fraction from the crude drug were separated on silicagel column using a $CHCl_3:MeOH\;(85:15)$ and $CHCl_3:MeOH:H_2O\;(70:30:4)$ as an eluent, and the average contents were about 0.93 and 0.36%.

  • PDF

Quantitative Determination of Protoberebrines from the Roots of Coptis chinensis

  • Min, Byung-Sun;Cho, Jae-Sue
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • A simple reversed phase HPLC method was developed for extracting pharmacologically active compounds coptisine, palmatine, berberine, and epiberberine from the roots of Coptis chinensis using a binary gradient of acetonitrile : 10 mM hexanesulfonic acid-Na monohydrate with UV detection at 254 nm. The coptisine (1), palmatine (2), berberine (3), and epiberberine (4) contents of the roots of C. chinensis collected from sixteen district markets in Korea and China were $6.79\;{\sim}\;24.63\;{\mu}g/g$, $5.40\;{\sim}\;20.75\;{\mu}g/g$, $21.40\;{\sim}\;81.21\;{\mu}g/g$, and $3.45\;{\sim}\;12.04\;{\mu}g/g$, respectively.

Alkaloidal Components of Chelidonii Fructus (애기똥풀 과실의 Alkaloid 성분)

  • Kim, Min-Soo;Hwang, Bang-Yeon;Choe, Sang-Gil;Lee, Myung-Koo;Ro, Jai-Seup;Lee, Kyong-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.4
    • /
    • pp.390-393
    • /
    • 2000
  • From the alkaloidal fraction of the fructus of Chelidonium majus, two protoberberine alkaloids and one benzophenanthridine alkaloid were isolated. On the basis of chemical and spectroscopic evidences, the structures of these compounds were identified as chelidonine, coptisine and berberine.

  • PDF

In Vivo Antifungal Effects of Coptis japonica Root-Derived Isoquinoline Alkaloids Against Phytopathogenic Fungi

  • LEE CHI-HOON;LEE HOI-JOUNG;JEON JU-HYUN;LEE HOI-SEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1402-1407
    • /
    • 2005
  • The fungicidal activities of Coptis japonica (Makino) extracts and their active principles were determined against Botrytis cineria, Erysiphe graminis, Phytophthora infestans, Puccinia recondita, Pyricularia grisea, and Rhizoctonia solani using a whole plant method in vivo, and compared with natural fungicides. The responses varied according to the plant pathogen tested. At 2,000 mg/l, the chloroform and butanol fractions obtained from methanolic extracts of C. japonica exhibited strong/moderate fungicidal activities against B. cinerea, E. graminis, P. recondita, and Py. grisea. Two active constituents from the chloroform fractions and one active constituent from the butanol fractions were characterized as isoquinoline alkaloids, berberine chloride, palmatine iodide, and coptisine chloride, respectively, using spectral analysis. Berberine chloride had an apparent $LC_{50}$ value of approximately 190, 80, and 50 mg/l against B. cinerea, E. graminis, and P. recondita, respectively; coptisine chloride had an $LC_{50}$ value of 210,20, 180, and 290 mg/l against B. cinerea, E. graminis, P. recondita, and Py. grisea, respectively; and palmatine iodide had an $LC_{50}$ value of 160 mg/l against Py. grisea. The isoquinoline alkaloids were also found to be more potent than the natural fungicides, curcumin and emodin. Therefore, these compounds isolated from C. japonica may be useful leads for the development of new types of natural fungicides for controlling B. cinerea, E. graminis, P. recondita, and Py. grisea in crops.

A Study for the isolation of the Berberine-type Alkaloid from Coptidis Rhizoma and for their Antitumor Activities

  • Shin, Kwhang-Ho;Ahn, Duk-Kyun;Woo, Eun-Ran;Lee, Eun-Ju;Rhee, Jae-Seong
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.157-168
    • /
    • 1997
  • The purpose of this study is the separation of biologically active ingredients from Coptidis Rhizoma which has been widely used as one of oriental herbal medicine for body fever. In this study, berberine-type alkaloids were tested on their biological activities in the aspect of antibacterial, antitumor, anti-herpetic and anti-HIV activity. Contents of five major alkaloids for the various origin of Coptidis Rhizoma were assayed by HPLC. As the results, the content of berberine from Coptis chinensis and Coptis japonica were 6.78% and 7.09%, respectively. The contents of coptisine, jatrorrhizine, berberastine from Coptis chinensis were higher than those of Coptis japonica. The amount of palmatine from both species were almost the same. Surprisingly for antitumor experiment, all compounds have been shown remarkable activity, especially against SNU-l(human stomach cancer) cell line. Among the compounds purified through column chromatography, palmatine, coptisine, and jatrorrhizine inhibited the growth of K-562(human chronic myelogenous leukemia) cell line whereas jatrorrhizine has been shown the effective inhibition of A-549 (human lung) cell line at the same time.

  • PDF

Inhibitory Effects of Coptis japonica Alkaloids on the LPS-Induced Activation of BV2 Microglial Cells

  • Jeon, Se-Jin;Kwon, Kyung-Ja;Shin, Sun-Mi;Lee, Sung-Hoon;Rhee, So-Young;Han, Seol-Heui;Lee, Jong-Min;Kim, Han-Young;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Min, Byung-Sun;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Coptis japonica (C. japonica) is a perennial medicinal plant that has anti-inflammatory activity. C. japonica contains numerous biologically active alkaloids including berberine, palmatine, epi-berberine, and coptisine. The most well-known anti-inflammatory principal in C. japonica is berberine. For example, berberine has been implicated in the inhibition of iNOS induction by cytokines in microglial cells. However, the efficacies of other alkaloids components on microglial activation were not investigated yet. In this study, we investigated the effects of three alkaloids (palmatine, epi-berberine and coptisine) from C. japonica on lipopolysaccharide (LPS)-induced microglial activation. BV2 microglial cells were immunostimulated with LPS and then the production of several inflammatory mediators such as nitric oxide (NO), reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) were examined as well as the phosphorylation status of Erk1/2 mitogen activated protein kinase (MAPK). Palmatine and to a lesser extent epi-berberine and coptisine, significantly reduced the release of NO, which was mediated by the inhibition of LPS-stimulated mRNA and protein induction of inducible nitric oxide synthase (iNOS) from BV2 microglia. In addition to NO, palmatine inhibited MMP-9 enzymatic activity and mRNA induction by LPS. Palmatine also inhibited the increase in the LPS-induced MMP-9 promoter activity determined by MMP-9 promoter luciferase reporter assay. LPS stimulation increased Erk1/2 phosphorylation in BV2 cells and these alkaloids inhibited the LPS-induced phosphorylation of Erk1/2. The anti-inflammatory effect of palmatine in LPS-stimulated microglia may suggest the potential use of the alkaloids in the modulation of neuroinflammatory responses, which might be important in the pathophysiological events of several neurological diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD) and stroke.

Determination of isoquinoline alkaloids by UPLC-ESI-Q-TOF MS: Application to Chelidonium majus L.

  • Jeong, Won Tae;Lim, Heung Bin
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.379-389
    • /
    • 2017
  • In this study, we set up an analytical method that can be used for rapid and accurate determination of representative isoquinoline alkaloids in medicinal plants using UPLC-ESI-Q-TOF MS (ultra pressure liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry). The compounds were eluted on a C18 column with 0.1 % formic acid and acetonitrile, and separated with good resolution within 13 min. Each of the separated components was characterized by precursor ions (generated by ESI-Q-TOF) and fragment ions (produced by collision-induced dissociation, CID), which were used as a reliable database. We also performed method validation: analytes showed excellent linearity ($R^2$, 0.9971-0.9996), LOD (5-25 ng/mL), LOQ (17-82 ng/mL), accuracy (91.6-97.4 %) as well as intra- and inter-day precisions (RSD, 1.8-3.2 %). In the analysis of Chelidonium majus L., magnoflorine, coptisine, sanguinarine, berberine and palmatine were detected by matching retention times and characteristic fragment ion patterns of reference standards. We also confirmed that, among the quantified components, coptisine was present in the highest quantity. Furthermore, alkaloid profiling was carried out by analyzing the fragment ion patterns corresponding to peaks of unknown components. In this manner, protopine, chelidonine, stylopine, dihydroberberine, canadine, and nitidine were tentatively identified. We also proposed the molecular structure of the fragment ions that appear in the mass spectrum. Therefore, we concluded that our suggested method for the determination of major isoquinoline alkaloids by UPLC-Q-TOF can be useful not only for quality control, but also for rapid and accurate investigation of phytochemical constituents of medicinal plants.

Review of Pharmacological Effects of Coptidis Rhizoma and its Bioactive Compounds (황련(黃連)과 구성 생화합물의 약리작용에 대한 고찰)

  • Kim, Ki Bae;Lee, Hyung Tak;Ku, Kyung Howi;Hong, Jin Woo;Cho, Su In
    • The Journal of Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.160-183
    • /
    • 2012
  • Objectives: Coptidis Rhizoma is one of the most popular and multi-purpose herbs in traditional medicine. The purpose of this study was to contribute to research and applications of Coptidis Rhizoma in clinic, by analyzing and reviewing international studies on its chemical compositions and pharmacological effects. Methods: This study analyzed 344 articles published from 2000 to 2010 in PubMed, Refworks, Riss, and KTKP. The search keywords were "Coptis chinensis", "Coptis japonica", "Coptidis Rhizoma", "huanglian" and "huanglian in Chinese". From them, we selected 114 articles which met our inclusion criteria. Results: This study reviewed 114 articles on Coptidis Rhizoma and its active components in terms of 'Active components', 'Experimental studies', 'Clinical studies', 'Industrial use' and 'Side Effects/Toxicity'. Conclusions: The active components of Coptidis Rhizoma are berberine, coptisine, epiberberine, palmatine, jateorrhizine, magnoflorine, worenine, etc. It is reported that Coptidis Rhizoma and its active components have anti-inflammatory, antibacterial, antitumor, and antioxidant activity, and cardiovascular, hepatoprotective, antidiabetic, neuroprotective, gastrointestinal, pain relieving, discharge phlegm and metrocyte proliferation effects. Moreover, we found that Coptidis Rhizoma can be used for bath preparation, cosmetic products and as a natural antimicrobial substance.