• Title/Summary/Keyword: Coprecipitation-oxidation method

Search Result 20, Processing Time 0.028 seconds

Synthesis and Electrochemical Performance of Polypyrrole-Coated Iron Oxide/Carbon Nanotube Composites

  • Kim, Dae-Won;Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • In this work, iron oxide ($Fe_3O_4$) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by a simple chemical coprecipitation method and $Fe_3O_4$-decorated MWNTs (Fe-MWNTs)/polypyrrole (PPy) nanocomposites (Fe-MWNTs/PPy) were prepared by oxidation polymerization. The effect of the PPy on the electrochemical properties of the Fe-MWNTs was investigated. The structures characteristics and surface properties of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were characterized by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The electrochemical performances of MWNTs, Fe-MWNTs, and Fe-MWNTs/PPy were determined by cyclic voltammetry and galvanostatic charge/discharge characteristics in a 1.0 M sodium sulfite electrolyte. The results showed that the Fe-MWNTs/PPy electrode had typical pseudo-capacitive behavior and a specific capacitance significantly greater than that of the Fe-MWNT electrode, indicating an enhanced electrochemical performance of the Fe-MWNTs/PPy due to their high electrical properties.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Crystal and Block Structures of Hexagonal Ferrites (육방정 페라이트의 결정과 Block 구조)

  • Shin, Hyung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • It has been studied the crystal and block structures of the hexagonal ferrites with M, W, Y and Z types prepared by various coprecipitation-oxidation method. The structures have been refined with a Rietveld analysis of the powder X-ray diffraction pattern with high precision ($R_{WP}$ <0.09, $R_I$ <0.03). The density difference between the S-blocks was proportioned to the cobalt contents in hexagonal ferrites, but that between the R or T-blocks was relatively small. Compared with the blocks and cation-oxygen polyhedra in BaM ($BaFe_{12}O_{19}$), those were bulky to the normal direction for the c-axis in $Co_2W$ ($BaCo_2Fe_{16}O_{27}$) and to the parallel direction for the c-axis in $Co_2Y$ ($Ba_2Co_2Fe_{12}O_{22}$) and $Co_2Z$ ($Ba_3Co_2Fe_{24}O_{41}$). The S-blocks of $Co_2W$, $Co_2Y$, and $Co_2Z$ were unstable and distorted. Because the T-block of $Co_2Z$ was unstable, the T-block was decomposed into the Ba-rich phase and $Co_2W$ at high temperatures above $1200^{\circ}C$. A standard powder X-ray diffraction pattern for $Co_2Z$ was proposed as well.

The Magnetic Properties of Co-Zn Mixed Y-type Hexagonal Ferrite (Co-Zn 복합 Y-형 육방정 페라이트의 자기적 특성)

  • 이종협;권순주
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.114-121
    • /
    • 1994
  • A $Ba_{2}Co_{2-x}Zn_{x}Fe_{12}O_{22}(x\;=\;0.0~2.0,\;Co_{2-x}Zn_{x}Y)$ powder was prepared by a oxidation--coprecipitation method and sintered at $1150~1250^{\circ}C$ for 4 hours. The microstructures and magnetic properties(saturation magnetization, Curie temperature), complex permeability of sintered body were measured As increasing Zn content from x = 0 to 2.0 in $Co_{2-x}Zn_{x}Y$, the real value of complex permeased from 7 GHz to 1 GHz. Because of resonance in few GHz range, Y-type hexagonal ferrite is rmre applicalble than spinel ferrite in high frequency range, and more research would be necessary to find the mechanism of the second resonance observed in higher frequency.

  • PDF

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$Structural Ceramics ; I. Synthesis and Sinterability of Powder ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : I 분말의 합성 및 소결성)

  • 오혁상;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1057-1063
    • /
    • 1996
  • Y2O3-CeO2-ZrO2 powders were prepared from water-soluble salts using a coprecipitation method. The forming process of oxide and the characteristics of the calcined powders treated in different drying conditions were investigated. The oxidation was occurred at the temperature of around 40$0^{\circ}C$ and the main crystallization of ZrO2 around $600^{\circ}C$. On calcination at $600^{\circ}C$ heating lamp-dried powders consisted of agglomerates of globular morphology with average agglomerate size of 2.27${\mu}{\textrm}{m}$ and specific surface area of 68.3m2/g and spray dried powders contained dense spheric particles with average agglomerate size of 1.35${\mu}{\textrm}{m}$ and specific surface area of 11.0m2/g which exhibited low agglomeration tendency. Removal of the water by a freeze-drying technique produced calcined powders containing flake-like secondary particle structures with wide agglomerate size distri-bution of 0.1-60${\mu}{\textrm}{m}$ and specific surface area of 24.5${\mu}{\textrm}{m}$. The 20 MPa-pressed density (36.8-41.4% T,D) of calcined powders did not nealy depend on drying methods whilst compaction ratio of calcined powders derived from freeze-drying was the highest ( 6.24) among three drying methods. On continuous heating up to 150$0^{\circ}C$ the sinterability of calcined powders derived from heating lamp-drying was superior to those derived from spray-and freeze-drying. The final sintered density of calcined powders was the highest (96% T,D at 150$0^{\circ}C$) in case of heating lamp-drying.

  • PDF

Synthesis of Porous Cu-ZnO Composite Sphere and CO Oxidation Property (기공성 Cu-ZnO 복합 구형 산화물의 합성 및 CO 산화반응 특성)

  • Park, Jung-Nam;Hwang, Seong-Hee;Jin, Mingshi;Shon, Jeong-Kuk;Kwon, Sun-Sang;Boo, Jin-Hyo;Kim, Ji-Man
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.328-332
    • /
    • 2010
  • In this study, porous ZnO sphere and Cu-ZnO composite were synthesized by coprecipitation method in diethylene glycol solvent. The physicochemical properties of as-prepared composite materials were characterized by SEM, XRD, $N_2$-sorption and $H_2$-TPR. A series of porous Cu-ZnO with different Cu contents (0, 6.6, 21.3, 36.4, 54.6, 77.8 wt%) was investigated for CO oxidation activity in a fixed bed reactor system. With increasing Cu content in Cu-ZnO the surface area and micropore volume of Cu-ZnO are decreased and Cu (36.4 wt%)-ZnO shows higher activity for CO oxidation compared to the others.

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides (유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성)

  • Kim, Seog-Jun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2 (Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향)

  • An, Suk-Jin;Lee, Sun-Young;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

Mineralogy and Geochemistry of Fault Gouge in Pyrite-rich Andesite (함황철석 안산암 내 단층 비지의 광물학적 및 지구화학적 연구)

  • Park, Seunghwan;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • To investigate the role of fault gauge in the behavior of heavy metals caused by the acid rock drainage in the area of pyrite-rich andesite, XRD, pH measurement, XRF, SEM-EDS, ICP, and sequential extraction method were used. Bed rock consists of quartz, pyrophyllite, pyrite, illite, and topaz, but the brown-colored fault gouge is composed of quartz, illite, chlorite, smectite, goethite, and cacoxenite. The mineral composition of bed rock suggests that it is heavily altered by hydrothermal activity. The concentrations of heavy metals in the bed rock are as follows, Zn > As > Cu > Pb > Cr > Ni > Cd, and those in fault gouge are As > Zn > Pb > Cr > Cu > Ni > Cd. The concentrations of the heavy metals in the fault gouge are generally higher than those in the bed rock, especially for Pb, As, and Cr, which were more than twice as those in the bed rock. It is believed that the difference in the amount of heavy metals between the bed rock and the fault gouge is mainly due to the existence of goethite which is the main mineral composition in the fault gouge and can play important role in sequestering these metals by coprecipitation and adsorption. The low pH, caused by oxidation of pyrite, also plays significant role in fixation of those metals. It is confirmed that the fractions of labile (step 1) and acid-soluble (step 2), which can be easily released into the environment, were higher in the bed rock. Those fractions were relatively low in fault gauge, suggesting that fault gauge can play important role as a sink of heavy metals to prevent those ones from being released in the area where the acid rock drainage can have an influence.