• Title/Summary/Keyword: Copper-tube

Search Result 264, Processing Time 0.027 seconds

NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL (6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석)

  • Yeom, Geum-Su
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.

A Comparative Analysis on the Thermal Performance of Solar Vacuum Collector Tubes (진공관식 태양열 집열 튜브의 열성능 비교 분석)

  • Hyun, June-Ho;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • This study deals with the collection of solar energy and its storage in evacuated tubular collector systems for different types of header design, flow passage and heat transfer devices. In order to elicit the most efficient combination of header design, flow passage, heat transfer hardware and operating conditions, a series of tests were done for the four different types of solar collectors utilizing vacuum tubes. The systems studied here either has the evacuated collector tubes with a metal cap on one end or the all-glass evacuated solar collector tubes These evacuated tubular collectors are known to be more efficient than the flat-plate ones in both direct and diffuse solar radiation. Test results show that the system comprised of the all-glass evacuated tubes with U-shaped copper pipes inside outperforms the other configurations. Especially, a rolled copper sheet tightly placed along the inner surface of each inner tube enhances heat transfer between the heated collector surface and the water contained in the U-shaped copper pipe.

A Study on Filter Effect on Improvement of Chest Radiography (Filter effect를 이용(利用)한 Chest Radiography)

  • Hayaahi, Taro;Ishida, Yuzi
    • Journal of radiological science and technology
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 1984
  • In the present study, we determined reduction value of radiation on chest film by film method and made a reduction curves. The reduction radio in exposure to radiation was induced by comparative investigation of characteristic curves and reduction one. Basing on these result, we could reduce a radiation dose on body surface in 50% at the time of chest radiography, if 17.8mm aluminium or 0.87mm copper filter were used in addition to conventional filter at 140KV tube voltage. The present study further revealed that the additional use of the aluminium or copper filter at the time of high voltage radiography in chest facilitates to identify an image of some pathologic focus overlapping wist clavicle and ribs.

  • PDF

The Thermal Rating of Metallic Case in Under Ground Cable System (지중 전력 케이블 금속보호관의 열적용량)

  • Ahn, M.K.;Kim, J.N.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.154-157
    • /
    • 2006
  • 지중 전력케이블의 접속함은 금속보호관(Casing or Protective Tube)의 전기적 검토를 통해서 적정 단면적을 산정하여 고장시 고장전류론 흘려주어야 한다. 현재 국내외 금속보호관은 그 재료로서 Copper를 사용하고 있으나 현장에서의 시공성 및 취급 용이성 때문에 알루미늄 보호관으로 재질 변경이 이루어지고 있다. 본 논문에서는 기존의 Copper보호관과 Aluminium보호관에서의 비교검토를 통해서 Aluminium보호관의 유효성을 검토하고 구리에서 알루미늄으로 재질 변경이 이루어 졌을 때 열적 제약조건을 고려하여 적정단면적을 재 산정한다. 또한 산정된 단면적은 단락시험을 통해서 그 유효성을 입증하였다.

  • PDF

Fabrication of Bi2212 superconductor by Centrifugal Forming Process (원심 성형법에 의한 고온초전도체 제조)

  • 정승호;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.503-506
    • /
    • 2002
  • BSCCO 2212 HTS was fabricated by CFP(centrifugal forming process). The powder was initially ground in the mixing ratio of 2:2::1:2 with 10% of SrSO$_4$. The temperature increased up to 1035$^{\circ}C$ and 1200$^{\circ}C$ for melting. The melt was poured into the preheated and rotating copper mould from 200 to 600$^{\circ}C$. The specimen was not broken by thermal impact when the melting temperature was over 1050$^{\circ}C$ and copper mould was preheated over 400$^{\circ}C$ for 30min. A tube type of specimen was annealed at 840$^{\circ}C$ or 860$^{\circ}C$ in oxygen atmosphere for 24hours. Typical microstructure was analyzed in terms of CFP parameters by XRD, SEM, and EDS and also superconducting characteristics were compared.

  • PDF

The Study of Short Circuit Capacity for Under Ground Cable Joint (지중 전력 케이블 접속함의 단락용량 정토)

  • Ahn, M.K.;Kim, J.N.;Kim, S.Y.;Son, S.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.171-173
    • /
    • 2006
  • 지중 전력케이블의 접속함은 금속보호관(Casing or Protective Tube)의 전기적 검토를 통해서 적정 단면적을 산정하여 고장시 고장전류를 흘려주어야 한다. 현재 국내외 금속보호관은 그 재료로서 Copper를 사용하고 있으나 현장에서의 시공성 및 취급 용이성 때문에 알루미늄 보호관으로 재질 변경이 이루어지고 있다. 본 논문에서는 기존의 Copper보호관과 Alumlnium보호관에서의 비교검토를 통해서 Aluminium보호관의 유효성을 검토하고 구리에서 알루미늄으로 재질 변경이 이루어 졌을 때 열적 제약조건을 고려하여 적정단면적을 재 산정한다. 또한 산정된 단면적은 단락시험을 통해서 그 유효성을 입증하였다.

  • PDF

Electrochemical corrosion behavior of atmospheric-plasma-sprayed copper as a coating material for deep geological disposal canisters

  • Sung-Wook Kim;Gha-Young Kim;Young-Ho Lee;Jun-Hyuk Jang;Chung-Won Lee;Jeong-Hyun Woo;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4032-4038
    • /
    • 2023
  • Cu, which exhibits excellent corrosion resistance in underground environments, has been investigated as a canister material for use in the deep geological disposal of spent nuclear fuels. In this study, the technical viability of atmospheric plasma spraying for producing Cu-coated canisters was investigated. A high-purity Cu film (millimeter scale) was deposited onto a stainless-steel substrate using a plasma gun with a shroud structure. Potentiodynamic polarization studies revealed that the Cu film exhibited a sufficiently low corrosion rate in the groundwater electrolyte. In addition, no pitting corrosion was observed on the Cu film surface after accelerated corrosion studies. A prototype cylindrical Cu film was fabricated on a 1/20 scale on a stainless-steel tube to demonstrate the scalability of atmospheric plasma spraying in producing Cu-coated canisters.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During Gas Cooling Process in a Hellically Coiled Tube

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yu, Tae-Geun;Kim, Dae-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.263-271
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during 9as cooling process of $CO_2$ (R744) in a helically coiled copper tube with the inner diameter of 4.55 mm and outer diameter of 6.35 mm were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter a pre-heater and a helically coiled type gas cooler (test section). The refrigerant mass fluxes are varied from 200 to $800kg/m^2s$ and the inlet pressures of gas cooler are 7.5 to 10.0 MPa. The heat transfer coefficients of $CO_2$ in a helically coiled tube are higher than those in a horizontal tube. The Pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those predicted by Ito's correlation developed for single-phase in a helically coiled tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However. at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al correlation. Therefore, various experiments in helically coiled tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in a helically coiled tube.

Condensation Heat Transfer Characteristics of R-134a with Wall Thickness and Surface Roughness on Stainless Steel Horizontal Plain Tubes (스테인리스 평활관의 관 두께 및 표면거칠기에 따른 R-134a 의 관외측 응축 열전달 특성 연구)

  • Heo, Jae-Hyeok;Yun, Rin;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1203-1210
    • /
    • 2006
  • The filmwise condensation heat transfer coefficients of R-134a on the horizontal copper and stainless steel tubes were measured and analyzed. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 0.89 to 1.65 mm. The polished stainless steel tube had an RMS surface roughness($R_q$) of 0.37 $\mu$m, and commercial stainless steel tubes had an surface roughness($R_q$) of 1.855 $\mu$m. The tests were conducted at the saturation temperatures of 20 and $30^{\circ}C$, and the liquid wall subcoolings from 0.4 to $2.1^{\circ}C$. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis. This trend in the stainless steel tube was explained by the effects of thermal resistance of tube material and surface roughness. Based on the experimental data with respect to wall thickness and surface roughness, it was suggested that the existing correlation on external condensation should be modified by considering material and surface roughness factors. The revised correlation was developed by introducing the effects of wall thickness and surface roughness into the Nusselt equation. The average deviation of the revised correlation was 13.0 %.

Fabrication of Microwave PECVD with Linear Antenna for large-scale deposition processing, and Analysis of Ar plasma characteristics using Electrostatic Probe and Temperature Characteristics (대면적 증착용 선형 초고주파 플라즈마 장치 제작 및 정전 탐침법을 이용한 Ar 플라즈마 특성 분석과 온도 특성 분석)

  • Han, Moon-Ki;Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.422-428
    • /
    • 2015
  • A 2.45GHz microwave plasma source with a linear antenna has been developed for low temperature large scale deposition processing. Microwave power is transmitted through WR340 waveguide and a copper rod, linear antenna, is located in a quartz tube. The power matching is effectively achieved by a linear antenna is located at ${\lambda}_g/4$ or $3{\lambda}_g/4$ from the end of WR340 waveguide. The Ar plasma was generated along the surface of quartz tube and a clear standing wave pattern with nearly 10cm wavelength was observed at Ar pressure of 200mTorr and 200W input power. The electron density and electron temperature were investigated by using the electrostatic probe. The electron density and electron temperature were highly measured near the surface of quartz tube. Ar plasma density along the quartz tube is mostly uniform despite standing wave set-up and antenna of long length. A uniform temperature was measured at 10~40cm distance from the end quartz tube and 5cm distance from the surface of quartz tube.