DOI QR코드

DOI QR Code

Electrochemical corrosion behavior of atmospheric-plasma-sprayed copper as a coating material for deep geological disposal canisters

  • Received : 2023.05.14
  • Accepted : 2023.07.16
  • Published : 2023.11.25

Abstract

Cu, which exhibits excellent corrosion resistance in underground environments, has been investigated as a canister material for use in the deep geological disposal of spent nuclear fuels. In this study, the technical viability of atmospheric plasma spraying for producing Cu-coated canisters was investigated. A high-purity Cu film (millimeter scale) was deposited onto a stainless-steel substrate using a plasma gun with a shroud structure. Potentiodynamic polarization studies revealed that the Cu film exhibited a sufficiently low corrosion rate in the groundwater electrolyte. In addition, no pitting corrosion was observed on the Cu film surface after accelerated corrosion studies. A prototype cylindrical Cu film was fabricated on a 1/20 scale on a stainless-steel tube to demonstrate the scalability of atmospheric plasma spraying in producing Cu-coated canisters.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea grant (2021M2E3A2041351) funded by the government of the Republic of Korea (Ministry of Science and ICT).

References

  1. R.C. Ewing, Long-term storage of spent nuclear fuel, Nat. Mater. 14 (2015) 252-257.  https://doi.org/10.1038/nmat4226
  2. M. Alwaeli, V. Mannheim, Investigation into the current state of nuclear energy and nuclear waste management-a state-of-art review, Energy 15 (2022) 4275. 
  3. D.G. Bennett, R. Gens, Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion, J. Nucl. Mater. 379 (2008) 1-8.  https://doi.org/10.1016/j.jnucmat.2008.06.001
  4. M. Buser, A. Lambert, W. Wildi, Deep geological radioactive and chemical waste disposal: where we stand and where we go, ATW, Int. J. Nucl. Power 65 (2020) 311-316.
  5. J. Lee, I. Kim, H. Ju, H. Choi, D. Cho, Proposal of an improved concept design for the deep geological disposal system of spent nuclear fuel in Korea, J. Nucl. Fuel Cycle Waste Technol. 18 (2020) 1-19.  https://doi.org/10.7733/jnfcwt.2020.18.S.1
  6. F. King, C. Lilja, M. Vahanen, Progress in the understanding of the long-term corrosion behaviour of copper canisters, J. Nucl. Mater. 438 (2013) 228-237.  https://doi.org/10.1016/j.jnucmat.2013.02.080
  7. F. King, Localised Corrosion of Copper Canisters in Bentonite Pore Water, Svensk Karnbranslehantering AB, 2013, pp. 13-27. TR. 
  8. F. King, 5.17 - waste containers, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Amsterdam, 2011, pp. 421-450. 
  9. H. Aalto, H. Rajainmaki, L. Laakso, Production Methods and Costs of Oxygen Free Copper Canisters for Nuclear Waste Disposal, Posiva Oy, 1996. POSIVA-96-08. 
  10. C. Lars, J. Magnus, L. Nina, R. Ulf, Design, Production and Initial State of the Canister, Svensk Karnbranslehentering AB, 2010. SKB-TR-10-14. 
  11. C.H. Boyle, S.A. Meguid, Mechanical performance of integrally bonded copper coatings for the long term disposal of used nuclear fuel, Nucl. Eng. Des. 293 (2015) 403-412.  https://doi.org/10.1016/j.nucengdes.2015.08.011
  12. D.S. Hall, M. Behazin, W.J. Binns, P.G. Keech, An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository, Prog. Mater. Sci. 118 (2021), 100766. 
  13. M.-S. Lee, H.-J. Choi, J.-W. Choi, H.-J. Kim, Application of cold spray coating technique to an underground disposal copper canister and its corrosion properties, Nucl. Eng. Technol. 43 (2011) 557-566.  https://doi.org/10.5516/NET.2011.43.6.557
  14. C.-G. Andersson, S. Karnbranslehantering AB, Development of Fabrication Technology for Copper Canisters with Cast Inserts, Svensk Karnbranslehentering AB, 2002. Status report in August 2001. 20253793 (osti.gov). 
  15. S.T. Auwal, S. Ramesh, F. Yusof, S.M. Manladan, A review on laser beam welding of copper alloys, Int. J. Adv. Manuf. Technol. 69 (2018) 475-490.  https://doi.org/10.1007/s00170-017-1566-5
  16. R. Unabia, R. Candidato Jr., L. Pawlowski, Current progress in solution precursor plasma spraying of cermets: a review, Metals 8 (2018) 420. 
  17. S. Lee, J. Lee, W. Kim, N.-M. Hwang, Plasma etching behavior of YOF coating deposited by suspension plasma spraying in inductively coupled CHF3/Ar plasma, Coatings 10 (2020) 1023. 
  18. P. He, L. Tang, G. Ma, H. Wang, S. Chen, M. Liu, S. Ding, Y. Bai, J. Tang, D. He, Understanding the formation mechanism of supersonic atmospheric plasma sprayed in-situ hypereutectic Al-25 wt%Si coating with nanostructured coupled eutectic: from powder, in-flight droplet, splat to coating, Appl. Surf. Sci. 530 (2020), 147246. 
  19. G.-Y. Kim, J. Jang, M. Lee, J.-S. Kim, Effect of chloride ions on electrochemical behavior of canister materials, Sci. Technol. Nucl. Install. (2022), 8577144.