• Title/Summary/Keyword: Copper recovery

Search Result 197, Processing Time 0.025 seconds

Copper Accumulation in Cells of Copper-Tolerant Bacteria, Pseudomonas stutzeri (구리 내성균(Pseudomonas stutzeri)의 균체내 구리 축적특성)

  • Cho, Ju-Sik;Han, Mun-Gyu;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. The copper-tolerant bacteria, Pseudomonas stutzeri which possessed the ability to accumulate copper, was isolated from mine wastewaters polluted with various heavy metals. The characteristics of copper accumulation in the cells and the recovery of the copper from the cells accumulating zinc, were investigated. Removal rate of copper from the solution containing 100mg/l of copper by copper-tolerant bacteria was more than 78% at 2 days after inoculation with the cells. A large number of the electron-dense granules were found mainly on the cell wall and cell membrane fractions, when determined by transmission electron microscopy. Energy dispersive X-ray spectroscopy revealed that the electron-dense granules were copper complex with the substances binding copper. The copper accumulated into the cells was not desorbed by deistilled water, but more than 80% of the copper accumulated was desorbed by 0.1M-EDTA solution. The residues of the cells after combustion at $550^{\circ}C$ amounted to about 23.2% of the dry weight of the cells. EDS analysis showed that residues were relatively pure copper compound containing more than 78.4% of copper.

  • PDF

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.

Recovery of Precious Metals from Waste PCB and Auto Catalyst Using Arc Furnace (귀금속 함유 폐기물로부터 아크로를 이용한 유가금속 회수)

  • Ban Bong-Chan;Kim Chang-Min;Kim Young-Im;Kim Dong-Sn
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.3-11
    • /
    • 2002
  • Recently, waste printed circuit board (PCB) has significantly increased in its amount due to the rapid development of electronic industries. Since several kinds of noxious materials and also valuable metals are contained in it, the waste PCB is in an urgent need of recycling for the dual purposes for the prevention of environmental pollution and recovery of valuable resources. Also, the catalyst which equipped in the exhaust pipes of automobiles to reduce emission of air pollutants contains precious met-als so that their recovery from the waste auto-catalysts is required. In this study, the recovery of valuable metals from waste PCB and auto-catalyst by arc furnace melting process has been investigated, which is known to be very stable and suitable f3r less production of pollutants due to its high operating temperature. The effect of the kind of flux on the recovery of precious metals was examined by using quicklime, converter slag, and copper slag as the flux. In addition, the influence of direct and alternating current and the applying direction of direct current has been investigated. It was observed that using converter or copper slag as a flux was more desirable for a higher efficiency in the precious metal recovery compared with quicklime. For the effect of current, application of direct current taking the bottom as a negative pole generally showed a better efficiency for the extraction of valuable metals from waste PCB, which was also observed for the case of waste auto-catalyst. The average recovery of precious metals from both wastes by arc furnace melting process was very high, which was up to in the range of 95~97%.

A Study on the Selective Leaching of the Copper Component by Sulfation Process (황산화 배소법에 의한 구리성분의 선택적 침출연구)

  • Kim, Woo Jin;Kim, Joon Soo;Kim, Myong Jun;Tran, Tam;Lee, Jin-Young;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • This study were carried out sulfation roasting and selective leaching test for the effective recovery of copper component in concentrate obtained by froth floatation of Autrallian low grade copper ore. The optimum conditions of sulfation roasting were temp. $450^{\circ}C$, $Na_2SO_4$ 2 mole ratio and time 1.5 h, and then selective leaching were room temperature and $H_2O$ or 1M $H_2SO_4$ solutions. Leaching efficiency of optimum sulfation product were 90 wt.% of copper, 20 wt.% of iron and 15wt.% of nickel elements. In this results, it was possible to selective decomposition leaching of the copper component under optimum conditions in this research.

Recovery of Nitric acid and Copper from Plating Waste of Automobile Wheel (자동차 휠 도금박리폐액으로부터 질산 및 구리의 회수)

  • Ha, Yonghwang;Gang, Ryun-Ji;Son, Seong-Ho;Lee, Wonsik;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6015-6022
    • /
    • 2013
  • It has been known that there are large amount of nitric acid and valuable metals, copper in the plating waste solution of automobile wheel. As nitric acid and valuable metals are high price and toxic, they should be recovered for economics and environment. Plating waste was extracted with TBP diluted with kerosene. The concentration of nitric acid in aqueous phase was analyzed by titration method by NaOH solution (0.1~1.0N) and the amount of metals by ICP-MS and ICP-AES. The concentration of copper in plating waste were 76,850 mg/L. The concentration of nitric acid in plating waste was 1.02 M. After three step extraction was performed with 50% TBP, each organic phase was stripped three times with distilled water to obtain 48.1% of nitric acid. Purity of final nitric acid was over 99.9% by ICP analysis. After recovery of nitric acid, copper was extracted with various solvent extractors like PC 88A, D2EPHA, LIX 84 and ISE 106. Among these extractors, 92% of copper was recovered by ISE 106 after 1st extraction and 30% $H_2SO_4$ stripping. Copper ion was reduced with $N_2H_4$ to make metal powders, respectively.

Recovery of Copper from Synthetic Leaching Solution of Manganese Nodule Matte by Solvent Extraction-electrowinning Process (망간단괴 매트상 모의 침출용액으로부터 용매추출-전해채취 공정에 의한 구리의 회수)

  • Kim, Hyun-Ho;Park, Kyung-Ho;Nam, Chul-Woo;Yoon, Ho-Sung;Kim, Min-Seuk;Kim, Chul-Joo;Park, Sang-Woon
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A scale-up test with a continuous solvent extraction and electro-winning system was carried out to separate and recover copper from a synthetic sulfuric acid solution (Cu 10.5 g/L, Co 2.0 g/L, Ni 15.0 g/L, Fe 0.2 g/L). The solution was introduced into mixer-settlers with four stages of extraction and two stages of stripping for continuous countercurrent solvent extraction to separate copper from nickel and cobalt. The loading was carried out using 40% LIX 84-I(v/v) as extractant with a phase ratio of A : O = 1 : 1. Meanwhile, the stripping was undertaken at a phase ratio of A : O = 1 : 1.5 using depleted electrolyte containing 35.0 g/L Cu and 180 g/L $H_2SO_4$ as stripping solution. The extraction and stripping efficiencies were found to be 96.7% and 91.0%, respectively. The copper composition of the stripped solution (pregnant electrolyte) was 50.0 g/L Cu with impurities of 25 ppm nickel, 5 ppm cobalt and 3 ppm iron. In the electro-winning process, copper metal of 99.833 purity was yielded with current efficiency of 98.9% and current density of $1.50A/dm^2$.

Recovery of Heavy Metals using Oxidized Undaria pinnatifida in Plating Wastewater

  • Park, Jae-Yeon;Jeon, Chung;Yu, Yeong-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.357-360
    • /
    • 2000
  • Biosorption process is an economic and potential process for metal sequestering from the water. The oxidized Undaria pinnatifida by nitric acid had high uptake capacity for heavy metals of 4 - 6 meq / g dry mass. For the application of oxidized Undaria pinnatifida, recovery of metal in plating wastewater was studied. The uptake capacity of the oxidized Undaria pinnatifida was high compared to the ion exchanger IR-120 plus. The treatment efficiency of chromium and copper in the wastewater was 85% In batch. Activated carbon was used to assist the recovery of water by removing organic matters of the wastewater.

  • PDF

Recovery Current Characteristics of the SC conductor for a $\mu$ SMES ($\mu$ SMES용 초전도도체의 회복전류 특성)

  • Kim, H.J.;Seong, K.C.;Cho, J.W.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Ryu, K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.807-809
    • /
    • 2000
  • We are developing a small-sized superconducting magnetic energy storage ($\mu$ SMES) magnet with the storage capacity of a few megajoules, which provides electric power with high quality to sensitive electric loads. As the earlier step of the fabrication of the $\mu$ SMES magnet, this paper describes recovery current experimental results of a kA class superconductor. Recovery current of a superconductor was tested in two points of copper ratio and cooling effect.

  • PDF