• Title/Summary/Keyword: Copper plate

Search Result 288, Processing Time 0.027 seconds

Wear and Friction Behavior on the Surface of Swash Plate of Compressor for Air Condition System of Automobile (자동차 에어컨용 압축기 사판의 표면 형태에 따른 마찰 마모 거동)

  • Kwon, Yun-Ki;Lee, Geon-Ho;Lee, Ki-Chun
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.88-94
    • /
    • 2011
  • The tribological characteristics of the swash plate surface of a compressor which is for automobile were investigated. For surface treatments, PTFE and $MoS_2$ are used as a solid lubricant, together with copper alloy. Test condition is set considering actual driving condition. Wear testing is conducted using pin on disk type tester, and the coefficient of friction and the temperature on friction surface are measured. Also, to determine the wear patterns, cross-section of friction surface is analyzed by SEM(scanning electrode microscope). The $MoS_2$, both at dry and lubricated conditions, friction surface and the coefficient of friction maintained rather stable results. But, the PTFE, at oil less condition, sample resulted in rather unstable condition. In case of copper alloy, quite higher friction coefficients(higher than 0.1) were obtained at dry condition. At the temperature of $125^{\circ}C$, seizure has occurred.

A Study on the Workability and Application of Cooper Plate based on the Waterproofing and Root Penetration Resistance (옥상녹화 방수 및 방근 기술로서 동판재의 적합성 및 시공성에 관한 연구)

  • Park, Chang-Hwa;Cho, Il-Kyu;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.151-154
    • /
    • 2007
  • To build up the green roofs, it must not adverse effect to durability and structural safety. That is conducted by safety system which consist of waterproofing to form basically, root barrier to protect the waterproofing. The reason why root barrier form is to protect the penetration force of root growth and the root could penetrate concrete surface, move inward so far. It may cause shorten the life span on concrete structure. For this problem, government constantly demand the solution to form the root barrier for waterproofing and concrete structure before the building is service. However, the technical action is not fully prepared. Therefore, in this study, we would like to suggest the workability and suitability of the copper plate to solve not only the side of waterproofing but also root barrier for green roof system and exhibit the mechanism for root penetration resistance and corrosion resistance.

  • PDF

Characterization of Electric Double-Layer Capacitors with Carbon Nanotubes Directly Synthesized on a Copper Plate as a Current Collector (구리 집전판에 직접 합성한 탄소나노튜브의 전기이중층 커패시터 특성)

  • Jung, Dong-Won;Lee, Chang-Soo;Park, Soon;Oh, Eun-Souk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Carbon nanotubes (CNTs) were directly synthesized on a copper (Cu) plate as a current collector by the catalytic thermal vapor deposition method for an electric double-layer capacitor (EDLC) electrode. The diameters of vertically aligned CNTs grown on the Cu plate were 20~30 nm. From cyclic voltammetry (CV) results, the CNTs/Cu electrode showed high specific capacitance with typical profiles of EDLCs. Rectangularshaped CV curves suggested that the CNTs/Cu electrode could be an excellent candidate for an EDLC electrode. The specific capacitances were in a range of 25~75 F/g with a scan rate of 10~100 mV/s and KOH electrolyte concentration 1~6 M, and were maintained up to 1000 charge/discharge cycles due to strong adhesion between the Cu substrate and the CNTs.

Numerical Simulation on the Steel Plate Cutting Performances of Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기의 강판절단성능에 관한 수치해석적 연구)

  • Min, Gyeong-Jo;Park, Hoon;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Locally damaged structures caused by earthquake or extraordinary external forces have been required to rapidly be dismantled because of its possibility of additional collapses. Particularly, steel frame structures were demolished by the shaped charge blasting method. Recently a research suggested a shape charge blasting technique which uses bent-shaped charge holder of copper plate and emulsion explosive charge to cut thick steel plates. This study simulated the cutting performance of the bent-shaped charge holder with considering types of explosives, thickness of copper liner and stand-off distances using LS-DYNA software. The shape charge blasting test of a 25mm thickness steel plate were used to calibrate the input parameters of the numerical models. The penetration depth and penetration width were analysed with different types of explosives, thickness of copper liner and stand-off distances.

Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding (타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가)

  • Jo, Pyeong-Seok;Youn, Chang-Seok;Hwang, Hyo-Woon;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.

A Study of Conservation and Production Techniques of Sword with Round pommel from Jisandong Tomb No.39 (지산동 39호분 장식대도의 보존과 제작기법)

  • Yun, Eunyoung;Jeon, Hyosoo
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.14-31
    • /
    • 2015
  • Sword with round pommel discovered in tomb No.39 in the Jisandong tumuli group (M310) is a large sword with a looped pommel enclosing a sculpted dragon head. The sword was produced using different techniques; gold decoration, plating, openwork carving and hammering by using gold and silver. This sword treated conservation work because it has deformation and damages of handle decoration, missing part of sword, and corrosion. Conservation treatment was that foreign material and corroded metal were removed from the surface, and performed to stabilize and reinforce the weakened metal. During the conservation treatment, the object was examined to understand its materials and production method. The result of research, the dragon head inside the looped, amalgam-plated pommel has surface gold decorations. The pommel has a thin gold plate placed over a bottom plate made of copper, which was hammered to create an embossed design. The silver plate-covered hilt, cylindrical in shape, has an openwork lattice design. The steel blade is single-edged. Finally, the locket of the sheath has an embossed design also created through hammering on a thin gold plate placed over the copper bottom plate.

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF

Development of LED Lamp which using Transparent Plastic Substrates (플라스틱 기판을 이용한 LED 투명 광원 구현)

  • Hong, Dae-Woon;Lee, Song-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • LEDs, compared to conventional light sources, have many advantages and their applications are rapidly expanding, especially in areas such as back-lights for LCD. In this paper, we propose a new LED lamp structure suitable for applications requiring a low power. In the proposed LED lamp structures, LED chips are mounted on a transparent polycarbonate plate, and thus photons are transmitted through the both sides of the plate. The copper layer deposited on the polycarbonate plate is patterned to form circuit patten and the chip mount pad, on which LED chips are mounted. We speculate that our proposed LED lamp structures may be used as a type of plate light source.

Numerical Fatigue Life Prediction of IGBT Module for Electronic Locomotive (수치해석을 이용한 전동차용 IGBT 모듈의 피로 수명 예측)

  • Kwon, Oh Young;Jang, Young Moon;Lee, Young-ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.103-111
    • /
    • 2017
  • In this study, the thermomechanical stress and fatigue analysis of a high voltage and high current (3,300 V/1200 A) insulated gate bipolar transistor (IGBT) module used for electric locomotive applications were performed under thermal cycling condition. Especially, the reliability of the copper wire and the ribbon wire were compared with that of the conventional aluminum wire. The copper wire showed three times higher stress than the aluminum wire. The ribbon type wire showed a higher stress than the circular type wire, and the copper ribbon wire showed the highest stress. The fatigue analysis results of the chip solder connecting the chip and the direct bond copper (DBC) indicated that the crack of the solder mainly occurred at the outer edge of the solder. In case of the circular wire, cracking of the solder occurred at 35,000 thermal cycles, and the crack area in the copper wire was larger than that of the aluminum wire. On the other hand, when the ribbon wire was used, the crack area was smaller than that of the circular wire. In case of the solder existing between DBC and base plate, the crack growth rate was similar regardless of the material and shape of the wire. However, cracking occurred earlier than chip solder, and more than half of the solder was failed at 40,000 cycles. Therefore, it is expected that the reliability of the solder between DBC and base plate would be worse than the chip solder.

Development of Nano-Tungsten-Copper Powder and PM Processes

  • Lee, Seong;Noh, Joon-Woong;Kwon, Young-Sam;Chung, Seong-Taek;Johnson, John L.;Park, Seong-Jin;German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.377-378
    • /
    • 2006
  • Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.

  • PDF