• Title/Summary/Keyword: Copper film

Search Result 561, Processing Time 0.032 seconds

A Study on the Application of Anti-Corrosion Techniques on the Surface of Oxygen Free Copper (무산소동의 표면부식 방지기술 적용에 관한 연구)

  • Joo, Hyung-Goun;Lee, Dae-Young;Zhang, Da Quan;Lee, Kang-Yong;Al-Hanash, Essam Khamis Ibrahim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.425-429
    • /
    • 2009
  • The protection for copper tarnish was developed by surface treatment method and volatile corrosion inhibiting (VCI) technology. The performance of surface treatment and VCI material is also examined in simulated test environment. Benzotriazole (BTAH) solution that contained molybdate showed best performance than others. Usage of VCI materials with surface treatment was more effective. The protection film foamed on the surface of copper was investigated by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Molybdate does not participate in the formation of the protective film but promotes the passivation effect. This facilitates the stabilization of the cuprous oxide film, and strengthens the adsorption of BTAH.

The Development of Micro Wiring System for Micro Active Endoscope (박막 공정을 이용한 초소형 내시경의 MicroWiring System의 개발)

  • Jung, Seok;Chang, Jun-Keun;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.362-365
    • /
    • 1997
  • In the field of Micro-Mechanics, it has been known diffcult to integrate the micro-machine with sensor and source line for the conventional copper line cnanot be used in compact and small size. We developed a system to make thethin copper film as a connect line on the poyurethane pipe (2mm in diameter) by the evaporation technique. This system consists of an evaporation chamber two long branches, substrate hoider and a Linear-Rotary motion feed feedthrough. The results showed that thin copper film coated polyurethanc pipe could be applied th the small medical devices such as the micro active endoscope.

  • PDF

Manufacturing Process Effect on Fatigue Properties for Copper Thin Film (구리박막의 피로특성에 관한 제조공정의 영향)

  • An, Joong-Hyok;Park, Jun-Hyub;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1786
    • /
    • 2007
  • The copper film coated by Sn is often used in various applications such as LCD, Mobile Phone and etc. Especially, when the film is used as tape carrier package(TCP) of LCD panel, the film is repeatedly applied by mechanical or(and) thermal stress and then is often failed. Therefore, to guarantee the reliability of the electrical devices using the film, the tensile and fatigue characteristics of the film are important. In this study, to obtain the tensile and fatigue characteristics of the film, the specimen was fabricated by etching process to make a smooth specimen of 2000 ${\mu}m$ width, 8000 ${\mu}m$ length and 15.26 ${\mu}m$ thickness. The 2 kinds of specimen were fabricated by other manufacturing process. These specimens had values of Young's modulus(80.2GPa) lower than literature values(108${\sim}$145GPa) for bulk values, but had high values of the yield and ultimate strength as 317MPa and 437MPa, respectively. And fatigue test of load-control with 20Hz frequency was performed.

  • PDF

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

Reflow of copper film for the interconnection of the next generation semiconductor devices (차세대 반도체 소자의 배선을 위한 구리박막의 reflow)

  • 김동원;김갑중;권인호;이승윤;라사균;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.206-212
    • /
    • 1997
  • The reflow characteristics of copper, which is expected to be used as interconnection materials in the next generation semiconductor devices, were investigated. Copper films were deposited on hole and trench patterns by metal organic chemical vapor deposition and annealed in nitrogen and oxygen ambient with the annealing temperatures ranging from $350^{\circ}C$ to $550^{\circ}C$. Copper films were not reflowed into the patterns upon the annealing in nitrogen ambient, but reflowed at the annealing temperature higher than $450^{\circ}C$ in oxygen ambient. It is considered that the reflow takes place as the heat generated by the oxidation of copper liquefies the copper film partly and the liquid copper fills the patterns for minimizing the surface energy and the potential energy. Upon the annealing in oxygen ambient, the copper oxide whose thickness was less than 300$\AA$ formed at the surface of an agglomerate and the resistivity of copper film increased drastically at an annealing temperature of $550^{\circ}C$ due to the copper agglomeration.

  • PDF

Fabrication and Properties of Organic Semiconductor CuPccp LB Thin Film (유기 반도체 CuPccp LB초박막의 제작 및 특성)

  • Jho, Mean Jea;Xouyang, Saiyang;Lee, Jin Su;Ahn, Da Hyun;Jung, Chi Sup
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • A copper tetracumylphenoxy phthalocyanine (CuPccp) thin film was formed on an organic insulator film by Langmuir-Blodgett (LB) deposition for gas sensor fabrication. To increase the reproducibility of film transfer, stearyl alcohol was used as a transfer promoter. The structural properties of the CuPccp layers were optically monitored through attenuated total reflection and polarization-modulated ellipsometry techniques. The average thickness of a single layer of the CuPccp LB film was measured to be 2.5 nm. Despite the role of the transfer promoter, the stability of the layer transfer was not sufficient to ensure homogeneity of the LB film. This was probably due to the presence of aggregates in the molecular structure of the CuPccp LB film. Nevertheless, copper phthalocyanine polymorphism can be greatly suppressed by the LB arrangement, which appears to contribute to the improvement of electrical conductivity. The p-type semiconductor characteristics were confirmed by Hall measurements from the CuPccp LB films.

Adhesion Improvement of Electroless Copper Plated Layer on PET Film - Effect of Pretreatment Conditions - (무전해 동도금 피막의 접착력 향상에 관한 연구 - PET 필름의 전처리 조건의 영향 -)

  • 오경화;김동준;김성훈
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.302-310
    • /
    • 2001
  • Cu/PET film composites were prepared by electroless copper plating method. In order to improve adhesion between electroless Cu plated layer and polyester (PET) film, the effect of pretreatment conditions such as etching method and mixed catalyst composition, and accelerator was investigated. Compared to NaOH etching medium, PET film was more finely etched by HCl solution, resulting in an improvement in adhesion between Cu layer and PET film. However, there were no significant differences in electromagnetic interference shielding effectiveness as a function of etching medium. The surface morphology of Cu plated PET film revealed that Pd/Sn colloidal particles became more evenly distributed in the smaller size by increasing the molar ratio of PdCl$_2$ : SnCl$_2$ from 1 : 4 to 1 : 16. With increasing the molar ratio of mixed catalyst, the adhesion and the shielding effectiveness of Cu plated PET film were increased. Furthermore, HCl was turned out to be a better accelerator than NaOH in order to enhance the activity of the mixed PdCl$_2$/SnCl$_2$ catalyst, which facilitated the formation of more uniform copper deposit on the PET film.

  • PDF

Development of Plastic Film Type Water Level Sensor for High Temperature (고온용 플라스틱 필름 수위 센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.

P-type transport characteristics of copper-oxide thin films deposited by vacuum thermal evaporation (진공열증착으로 성막된 산화구리 박막의 p-형 전도특성)

  • Lee, Ho-Nyeon;Song, Byeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2267-2271
    • /
    • 2011
  • This study was focused on getting p-type copper-oxide thin-film semiconductors suitable for p-channel thin-film transistors. Vacuum thermal evaporation and thermal annealing were used to get copper-oxide thin-film semiconductor having properties adoptable as an active layer of thin-film transistors. n-type thin films having electron carrier density of about $10^{22}\;cm^{-3}$ before thermal annealing was converted to p-type thin films having hole carrier density of about $10^{16}\;cm^{-3}$ as the thermal annealing conditions were optimized.

Cu2O Thin Film Photoelectrode Embedded with CuO Nanorods for Photoelectrochemical Water Oxidation

  • Kim, Soyoung;Kim, Hyojin
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • Assembling heterostructures by combining dissimilar oxide semiconductors is a promising approach to enhance charge separation and transfer in photoelectrochemical (PEC) water splitting. In this work, the CuO nanorods array/$Cu_2O$ thin film bilayered heterostructure was successfully fabricated by a facile method that involved a direct electrodeposition of the $Cu_2O$ thin film onto the vertically oriented CuO nanorods array to serve as the photoelectrode for the PEC water oxidation. The resulting copper-oxide-based heterostructure photoelectrode exhibited an enhanced PEC performance compared to common copper-oxide-based photoelectrodes, indicating good charge separation and transfer efficiency due to the band structure realignment at the interface. The photocurrent density and the optimal photocurrent conversion efficiency obtained on the CuO nanorods/$Cu_2O$ thin film heterostructure were $0.59mA/cm^2$ and 1.10% at 1.06 V vs. RHE, respectively. These results provide a promising route to fabricating earth-abundant copper-oxide-based photoelectrode for visible-light-driven hydrogen generation using a facile, low-cost, and scalable approach of combining electrodeposition and hydrothermal synthesis.