• 제목/요약/키워드: Copper chaperone

검색결과 4건 처리시간 0.014초

Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals

  • Hyun, Ja-shil;Park, Sung Jean
    • 한국자기공명학회논문지
    • /
    • 제20권3호
    • /
    • pp.76-81
    • /
    • 2016
  • Copper is an elemental ion in living organisms. CopP from Helicobacter Pylori (HpCopP) is a copper(I)-binding protein and was suggested as regulator of copper metabolism in vivo. Previously, the metal binding property of HpCopP for Ag(I), Cu(I), and Cu(II) as well as the tertiary structure of HpCopP was shown. In this study, the dynamic profiles of HpCopP depending on metal binding were studied using ${^1H}-^{15}N$ steady-state NOE analysis. The heteroNOE experiment was performed for apo-CopP or metal-bound CopP. The obtained NOE values were analyzed and compared to figure out the effect of metals on the structural flexibility of HpCopP. As a result, Ag(I) and Cu(I) ions improved the rigidity of the structure while Cu(II) ion increased the flexibility of the structure, suggesting the oxidation of the CXXC motif decreases the structural stability of HpCopP.

Transduced Human Copper Chaperone for Cu,Zn-SOD (PEP-1-CCS) Protects Against Neuronal Cell Death

  • Choi, Soo Hyun;Kim, Dae Won;Kim, So Young;An, Jae Jin;Lee, Sun Hwa;Choi, Hee Soon;Sohn, Eun Jung;Hwang, Seok-Il;Won, Moo Ho;Kang, Tae-Cheon;Kwon, Hyung Joo;Kang, Jung Hoon;Cho, Sung-Woo;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.401-408
    • /
    • 2005
  • Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

Expression of Yeast Cyclophilin A (Cpr1) Provides Improved Stress Tolerance in Escherichia coli

  • Kim, Il-Sup;Shin, Sun-Young;Kim, Young-Saeng;Kim, Hyun-Young;Lee, Dong-Hee;Park, Kyung-Moc;Jin, Ingn-Yol;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.974-977
    • /
    • 2010
  • Cyclophilins contain the conserved activity of cis-trans peptidyl-prolyl isomerase, which is implicated in protein folding, and function as molecular chaperones. When the yeast cyclophilin A gene (cpr1) was subcloned into the prokaryotic expression vector pKM260, it was found that the expression of Cpr1 drastically increased the cell viability of E. coli BL21 when under abiotic stress conditions, as in the presence of cadmium, copper, hydrogen peroxide, heat, and SDS. Therefore, this study illustrates the importance of Cpr1 as a molecular chaperone that can improve the cellular stress responses when E. coli cells are exposed to adverse conditions, while also demonstrating its potential to increase the stability of E. coli strains utilized for the production of recombinant proteins.

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.