Browse > Article
http://dx.doi.org/10.6564/JKMRS.2016.20.3.076

Dynamic Profile of the Copper Chaperone CopP from Helicobacter Pylori Depending on the Bound Metals  

Hyun, Ja-shil (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University)
Park, Sung Jean (Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.20, no.3, 2016 , pp. 76-81 More about this Journal
Abstract
Copper is an elemental ion in living organisms. CopP from Helicobacter Pylori (HpCopP) is a copper(I)-binding protein and was suggested as regulator of copper metabolism in vivo. Previously, the metal binding property of HpCopP for Ag(I), Cu(I), and Cu(II) as well as the tertiary structure of HpCopP was shown. In this study, the dynamic profiles of HpCopP depending on metal binding were studied using ${^1H}-^{15}N$ steady-state NOE analysis. The heteroNOE experiment was performed for apo-CopP or metal-bound CopP. The obtained NOE values were analyzed and compared to figure out the effect of metals on the structural flexibility of HpCopP. As a result, Ag(I) and Cu(I) ions improved the rigidity of the structure while Cu(II) ion increased the flexibility of the structure, suggesting the oxidation of the CXXC motif decreases the structural stability of HpCopP.
Keywords
HpCopP; Copper chaperone; CXXC motif; Oxidation; Helicobacter Pylori; NMR;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Solioz, and J. V. Stoyanov, FEMS Microbiol. Rev. 27, 183 (2003)   DOI
2 M. M. Pena, J. Lee, and D. J. Thiele, J. Nutr. 129, 1251 (1999)   DOI
3 A. C. Rosenzweig, Acc. Chem. Res. 34, 119 (2001)   DOI
4 M. Solioz, Biochem. Soc. Trans. 30, 688 (2002)   DOI
5 L. Banci, I. Bertini, R. Del Conte, J. Markey, and F. J. Ruiz-Duenas, Biochemistry 40, 15660 (2001)   DOI
6 A. Odermatt, and M. Solioz, J. Biol. Chem. 270, 4349 (1995)   DOI
7 P. Cobine, W. A. Wickramasinghe, M. D. Harrison, T. Weber, M. Solioz, and C. T. Dameron, FEBS Lett. 445, 27 (1999)   DOI
8 Banci, I. Bertini, S. Ciofi-Baffoni, R. Del Conte, and L. Gonnelli, Biochemistry 42, 1939 (2003)   DOI
9 D. Beier, G. Spohn, R. Rappuoli, and V. Scarlato, J. Bacteriol. 179, 4676 (1997)   DOI
10 D. Bayle, S. Wangler, T. Weitzenegger, W. Steinhilber, J. Volz, M. Przybylski, K. P. Schafer, G. Sachs, and K. Melchers, J. Bacteriol. 180, 317 (1998)
11 A. Urvoas, B. Amekraz, C. Moulin, L. L. Clainche, R. Stocklin, and M. Moutiez, Rapid Commun. Mass Spectrom. 17, 1889 (2003)   DOI
12 S. Mana-Capelli, A. K. Mandal, and J. M. Arguello, J. Biol. Chem. 278, 40534 (2003)   DOI
13 F. Arnesano, L. Banci, I. Bertini, S. Mangani, and A. R. Thompsett, Proc. Natl. Acad. Sci. U. S. A. 100, 3814 (2003)   DOI
14 S. J. Park, Y. S. Jung, J. S. Kim, M. D. Seo, and B. J. Lee, Proteins 71, 1007 (2008)   DOI
15 S. J. Park, J. Kor. Mag. Reson. Soc. 18, 47 (2014)   DOI
16 J. Hyun, and S. J. Park, J. Kor. Magn. Reson. Soc. 19, 149 (2015)   DOI
17 N. A. Farrow, R. Muhandiram, A. U. Singer, S. M. Pascal, C. M. Kay, G. Gish, S. E. Shoelson, T. Pawson, J. D. Forman-Kay, and L. E. Kay, Biochemistry 33, 5984 (1994)   DOI
18 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)
19 P. A. Cobine, G. N. George, D. J. Winzor, M. D. Harrison, S. Mogahaddas, and C. T. Dameron,. Biochemistry 39, 6857 (2000)   DOI