Transduced Human Copper Chaperone for Cu,Zn-SOD (PEP-1-CCS) Protects Against Neuronal Cell Death

  • Choi, Soo Hyun (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, Dae Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kim, So Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • An, Jae Jin (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun Hwa (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Hee Soon (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Sohn, Eun Jung (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Hwang, Seok-Il (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Won, Moo Ho (Department of Anatomy, College of Medicine, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy, College of Medicine, Hallym University) ;
  • Kwon, Hyung Joo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kang, Jung Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Park, Jinseu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Eum, Won Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2005.07.15
  • Accepted : 2005.08.29
  • Published : 2005.12.31

Abstract

Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

Keywords

Acknowledgement

Supported by : Korean Science and Engineering Foundation

References

  1. Bartnikas, T. B., Waggoner, D. J., Casareno, R. L., Gaedigk, R., White, R. A., et al. (2000) Chromosomal localization of CCS, the copper chaperone for Cu/Zn superoxide dismutase. Mamm. Genome 11, 409-411
  2. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein- dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brewis, N., Phelan, A., Webb, J., Drew, J., Elliott, G., et al. (2000) Evaluation of VP22 spread in tissue culture. J. Virol. 74, 1051-1056 https://doi.org/10.1128/JVI.74.2.1051-1056.2000
  4. Cashman, S. M., Morris, D. J., and Kumar-Singh, R. (2003) Evidence of protein transduction but not intracellular by protein fused to HIV Tat in retinal cell culture and in vivo. Mol. Ther. 8, 130-142 https://doi.org/10.1016/S1525-0016(03)00131-X
  5. Chan, P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow. Metab. 21, 2-14
  6. Chan, P. H., Kawase, M., Murakami, K., Chen, S. F., Li, Y., et al. (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 18, 8292-8299
  7. Culotta, V. C., Klomp, L. W. J., Strain, J., Casereno, R. L. B., Krems, B., et al. (1997) The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469-23472 https://doi.org/10.1074/jbc.272.38.23469
  8. Demopoulos, H. B., Flamm, E. S., Pietronigro, D. D., and Seligman, M. N. (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. 492, S91-S119
  9. Eum, W. S., Choung, I. S., Kim, A. Y., Lee, Y. J., Kang, J. H., et al. (2002) Transduction efficacy of Tat-Cu,Zn-superoxide dismutase is enhanced by copper ion recovery of the fusion protein. Mol. Cells 13, 334-340
  10. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., et al. (2004a) HIV-1 Tat mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic ${\betha}$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349 https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  11. Eum, W. S., Kim, D. W., Hwang, I. K., Yoo, K. Y., Kang, T. C., et al. (2004b) In vivo protein transduction: Biologically active intact PEP-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669 https://doi.org/10.1016/j.freeradbiomed.2004.07.028
  12. Fawell, S., Seery, J., and Daikh, Y. (1991) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668
  13. Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2587-2597
  14. Frantseva, M. V., Carlen, P. L., and Perez Velazquez, J. L. (2001) Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. Free Radic. Biol. Med. 31, 1216-1227 https://doi.org/10.1016/S0891-5849(01)00705-5
  15. Fridovich, I. (1995) Superoxide radical and superoxide dismutase. Annu Rev. Biochem. 64, 97-112 https://doi.org/10.1146/annurev.bi.64.070195.000525
  16. Fugita, H., Sato, K., Wen, T. C., Peng, Y., and Sakanaka, M. (1999) Differential expression of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J. Cereb. Blood Flow. Metab. 19, 604-615 https://doi.org/10.1038/sj.bmt.1700655
  17. Ha, K. T., Lee, Y. C., Cho, S. H., Kim, J. K., and Kim, C. H. (2004) Molecular characterization of membrane type and ganglioside-specific sialidase (Neu3) expressed in E. coli. Mol. Cells 17, 267-273
  18. Hall, E. D. and Braughler, J. M. (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic. Biol. Med. 6, 303-313 https://doi.org/10.1016/0891-5849(89)90057-9
  19. Halliwell, B. and Gutteridge, J. M. C. (1999) Free Radicals in Biology and Medicine, Oxford University Press, Oxford
  20. Hiromura, M., Chino, H., Sonoda, T., and Sakurai, H. (2000) Molecular cloning and characterization of a copper chaperone for copper/zinc superoxide dismutase from the rat. Biochem. Biophys. Res. Commun. 275, 394-400 https://doi.org/10.1006/bbrc.2000.3328
  21. Hwang, J. H., Yuk, S. H., Lee, J. H., Lyoo, W. S., Ghil, S., et al. (2004) Differentiation of stem cells isolated from rat smooth muscle. Mol. Cells 17, 57-61
  22. Kang, T. C., Park, S. K., Hwang, I. K., An, S. J., Choi, S. Y., et al. (2002) Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Res. 944, 10-18 https://doi.org/10.1016/S0006-8993(02)02596-9
  23. Kim, C. H. (2003) A Salmonella typhimurium rfaE mutants recovers invasiveness for human epithelial cells when complemented by wild type rfaE (confering biosynthesis of ADPL- glycero-D-manno-heptose-containing lipopolysaccharide). Mol. Cells 15, 226-232
  24. Kim, D. W., Eum, W. S., Jang, S. H., Kim, S. Y., Choi, H. S., et al. (2005) Transduced Tat-SOD fusion protein protects against ischemic brain injury. Mol. Cells 19, 88-96
  25. Kinouchi, H., Epstein, C. J., Mizui, T., Carlson, E. J., Chen, S. F., et al. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing Cu,Zn-superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 11158-11162
  26. Liu, P. K., Hsu, C. Y., Dizdaroglu, M., Floyd, R. A., Kow, Y. W., et al. (1996) Damage, repair, and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J. Neurosci. 16, 6795-6806
  27. Lu, Y., LaCroix, L. B., Lowery, M. D., Solomon, E. I., Bender, C. J., et al. (1993) Concentration of a 'blue' copper site at the native zinc site of yeast copper-zinc superoxide dismutase. J. Am. Chem. Soc. 115, 5907-5918 https://doi.org/10.1021/ja00067a003
  28. Lundberg, M., Wikstrom, S., and Johansson, M. (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8, 143-150 https://doi.org/10.1016/S1525-0016(03)00135-7
  29. Lyons, T. J., Gralla, E. B., and Valentine, J. S. (1999) Biological chemistry of copper-zinc superoxide dismutase and its link to amyotrophic lateral sclerosis. Met. Ions Biol. Syst. 36, 125- 177
  30. McCord, J. M. (1985) Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159-163 https://doi.org/10.1056/NEJM198501173120305
  31. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. J. Biol. Chem. 244, 6049-6055
  32. Mine, D. B. and Johnson, P. E. (1993) Assessment of copper status nutritional status: effect of age and gender on reference ranges in healthy adults. Clin. Chem. 39, 883-887
  33. Moore, S. D., Chen, M. M., and Cox, D. W. (2000) Cloning and mapping of murine superoxide dismutase copper chaperone (Ccsd) and mapping of the human ortholog. Cytogenet. Cell Genet. 88, 35-37 https://doi.org/10.1159/000015480
  34. Morris, M. C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176 https://doi.org/10.1038/nbt1201-1173
  35. Numagami, Y., Sato, S., and Ohnishi, S. T. (1996) Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants. Neurochem. Int. 29, 135-143 https://doi.org/10.1016/0197-0186(95)00117-4
  36. Petito, C. K., Torres-Munoz, J., Roberts, B., Olarte, J. P., Nowak, T. S. Jr., et al. (1997) DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat. J. Cereb. Blood Flow. Metab. 17, 967-976
  37. Prochiantz, A. (2000) Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406 https://doi.org/10.1016/S0955-0674(00)00108-3
  38. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O'Halloran, T. V. (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805-808 https://doi.org/10.1126/science.284.5415.805
  39. Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., et al. (2003) Cell-permeable peptides: A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585-590
  40. Rothstein, J. D., Dykes-Hoberg, M., Corson, L. B., Becker, M., and Cleveland, D. W. (1999) The copper chaperone for CCS is abundant in neurons and astrocytes in human and rodent brain. J. Neurochem. 72, 422-429 https://doi.org/10.1046/j.1471-4159.1999.0720422.x
  41. Schmidt, P. J., Rae, T. D., Pufahl, R. A., Hamma, T., Strain, J., et al. (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J. Biol. Chem. 274, 23719-23725 https://doi.org/10.1074/jbc.274.34.23719
  42. Valentine, J. S. and Gralla, E. B. (1997) Delivering copper inside yeast and human cells. Science 278, 817-818 https://doi.org/10.1126/science.278.5339.817
  43. Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017 https://doi.org/10.1074/jbc.272.25.16010
  44. Wadia, J. S. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  45. Won, M. H., Kang, T. C., Jeon, G. S., Lee, J. C., Kim, D. Y., et al. (1999) Immunohistochemical detection of oxidative DNA damage induced by ischemic-reperfusion insults in gerbil hippocampus in vivo. Brain Res. 836, 70-78 https://doi.org/10.1016/S0006-8993(99)01611-X
  46. Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., et al. (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Znsuperoxide dismutase. Proc. Natl. Acad. Sci. USA 97, 2886-2891
  47. Yang, G., Chan, P. H., Chen, J., Carlson, E., Chen, S. F., et al. (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165-170 https://doi.org/10.1161/01.STR.25.1.165
  48. Zhu, H., Shipp, E., Sanchez, R. J., Liba, A., Stine, J. E., et al. (2000) Cobalt(2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Biochemistry 39, 5413-5421 https://doi.org/10.1021/bi992727+