Browse > Article
http://dx.doi.org/10.4014/jmb.0911.11005

Expression of Yeast Cyclophilin A (Cpr1) Provides Improved Stress Tolerance in Escherichia coli  

Kim, Il-Sup (Department of Biology, Kyungpook National University)
Shin, Sun-Young (Department of Biology, Kyungpook National University)
Kim, Young-Saeng (Department of Biology, Kyungpook National University)
Kim, Hyun-Young (Department of Biology, Kyungpook National University)
Lee, Dong-Hee (Genomine Inc.)
Park, Kyung-Moc (Genomine Inc.)
Jin, Ingn-Yol (Department of Microbiology, Kyungpook National University)
Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.6, 2010 , pp. 974-977 More about this Journal
Abstract
Cyclophilins contain the conserved activity of cis-trans peptidyl-prolyl isomerase, which is implicated in protein folding, and function as molecular chaperones. When the yeast cyclophilin A gene (cpr1) was subcloned into the prokaryotic expression vector pKM260, it was found that the expression of Cpr1 drastically increased the cell viability of E. coli BL21 when under abiotic stress conditions, as in the presence of cadmium, copper, hydrogen peroxide, heat, and SDS. Therefore, this study illustrates the importance of Cpr1 as a molecular chaperone that can improve the cellular stress responses when E. coli cells are exposed to adverse conditions, while also demonstrating its potential to increase the stability of E. coli strains utilized for the production of recombinant proteins.
Keywords
Cyclophilin A; Cpr1 expression; molecular chaperone; stress tolerance; Escherichia coli;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Costa, V. M., M. A. Amorim, A. Quintanilha, and P. Moradas-Ferreira. 2002. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: The involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic. Biol. Med. 33: 1507-1515.   DOI   ScienceOn
2 Massignan, T., F. Casoni, M. Basso, P. Stefanazzi, E. Biasini, M. Tortarolo, et al. 2007. Proteomic analysis of spinal cord of presymptomatic amyotrophic lateral sclerosis G93A SOD1 mouse. Biochem. Biophys. Res. Commun. 353: 719-725.   DOI   ScienceOn
3 Tummala, H., C. Jung, A. Tiwari, C. M. Higgins, L. J. Hayward, and Z. Xu. 2005. Inhibition of chaperone activity is a shared property of several Cu,Zn-superoxide dismutase mutants that cause amyotrophic lateral sclerosis. J. Biol. Chem. 280: 17725-17731.   DOI
4 Wang, P., M. E. Cardenas, G. M. Cox, J. R. Perfect, and J. Heitman. 2001. Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep. 2: 511-518.   DOI
5 Wang, P. and J. Heitman. 2005. The cyclophilins. Genome Biol. 6: 226.   DOI
6 Wong, D. K., B. Y. Lee, M. A. Horwitz, and B. W. Gibson. 1999. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect. Immun. 67: 327-336.
7 Berger, R., F. Schauwecker, and U. Keller. 1999. Transcriptional analysis of the cyclophilin A gene (cypA) of Streptomyces chrysomallus. FEMS Microbiol. Lett. 178: 39-45.   DOI   ScienceOn
8 Cabiscol, E., E. Piulats, P. Echave, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393-27398.
9 Chen, A. P., G. L.Wang, Z. L. Qu, C. X. Lu, N. Liu, F. Wang, and G. X. Xia. 2007. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell Rep. 26: 237-245.   DOI   ScienceOn
10 Coaker, G., A. Falick, and B. Staskawicz. 2005. Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308: 548-550.   DOI   ScienceOn
11 Costa, V., A. Quintanilha, and P. Moradas-Ferreira. 2007. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59: 293-298.   DOI   ScienceOn
12 Dolinski, K., S. Muir, M. Cardenas, and J. Heitman. 1997. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 94: 13093-13098.   DOI   ScienceOn
13 Galat, A. 2004. Function-dependent clustering of orthologues and paralogues of cyclophilins. Proteins 56: 808-820.   DOI   ScienceOn
14 Adamis, P. D., D. S. Gomes, M. D. Pereira, J. Freire de Mesquita, M. L. Pinto, A. D. Panek, and E. C. Eleutherio. 2004. The effect of superoxide dismutase deficiency on cadmium stress. J. Biochem. Mol. Toxicol. 18: 12-17.   DOI   ScienceOn
15 Arevalo-Rodriguez, M., M. E. Cardenas, X. Wu, S. D. Hanes, and J. Heitman. 2000. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 19: 3739-3749.   DOI   ScienceOn
16 Arevalo-Rodriguez, M., X. Wu, S. D. Hanes, and J. Heitman. 2004. Prolyl isomerases in yeast. Front. Biosci. 9: 2420-2446.   DOI
17 Arevalo-Rodriguez, M. and J. Heitman. 2005. Cyclophilin A is localized to the nucleus and controls meiosis in Saccharomyces cerevisiae. Eukaryot. Cell 4: 17-29.   DOI   ScienceOn
18 Kim, I. S., H. S. Yun, I. S. Park, H. Y. Sohn, H. Iwahashi, and I. N. Jin. 2006. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. J. Biosci. Bioeng. 102: 288-296.   DOI   ScienceOn