• Title/Summary/Keyword: Copper Effect

Search Result 1,339, Processing Time 0.035 seconds

Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials (상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響))

  • Lee, Jae-O;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The room-temperature electrodeposition of metallic lithium was investigated from ionic liquid, 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) with lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) as a lithium source. Cyclic voltammograms on gold working electrode showed the possibility of the electrodeposition of metallic lithium, and the reduction current on a gold electrode was higher than the value on platinum and copper. The metallic lithium could be electrodeposited on the gold electrode under potentiostatic condition at -2.4 V (vs. Pt-QRE) and was confirmed by analytical techniques including XRD and SEM-EDS. The dendrite-typed electrodeposits were composed of a metallic lithium and a alloy with gold substrate. And any impurity could be detected except for trace oxygen introduced during handling for the analyses.

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic

  • Han, Yong;Cho, Kyoungah;Park, Sukhyung;Kim, Sangsig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.24-27
    • /
    • 2014
  • In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.

A Study on the Simulator for the fabrication of bandpass filter for the Wide-band Codeless Division Multiple Access (광 대역 통과 필터 제작을 위한 모의 실험기)

  • 유일현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.686-693
    • /
    • 2004
  • We have studied a method to fabricated a Surface Acoustic Waves (SAW) filter for Wide band Codeless Division Multiple Access(WCDMA) was formed on the Langasite substrate and was evaporated by Aluminum-Copper alloy and then we developed a simulator using the mathematica package. And, we can design and fabricate the Slanted finger Inter-digital Transducer (SFIT) for the purpose to decreased the ultimate rejections on side of the electrodes, and performed computer-simulation by simulator. Also, we have employed that the block weighted type Inter-digital Transduce(IDT) as input transduce of the filter and the withdrawal weighted type IDT as an output transducer of the filter in order to minimize effect of diffractions. We have employed that the number of pairs of the input and output IDT are 50 pairs and the thickness and the width of reflector are $5000\AA$, and $1\lambda/4(\cong3.6{\mu}m)$, respectively. Also the width of IDT' finger and the space between IDT' finger and reflector are $1\lambda$/16 and 1\lambda$/8, respectively. Frequency response of the fabricated SAW bandpass filter has the property that center frequency is about 190MHz, bandwidth at the 3dB is probably 4MHz and out-band attenuation is -60dB approximately.

Preparation and Characteristics of Poly(phenylene ether)s in Various Reaction Conditions (다양한 반응조건에 따른 폴리페닐렌에테르의 중합 특성)

  • Park, Jong-Hyun;Kim, Nam-Cheol;Kim, Yong-Tae;Nam, Sung-Woo;Kim, Young-Jun;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.244-248
    • /
    • 2011
  • Poly(2,6-dimethyl-1,4-phenylene ether) (PPE) was synthesized by oxidative polymerization using various Cu(I)-amine catalyst system. The effects of catalyst/monomer ratio, different amine ligand, and the content of 2,4,6-trimethylphenol (TMP) additive on the polymer yield and molecular weight were investigated by using gel permeation chromatography. The catalytic activity of various Cu-amine systems on the 2,S-dimethylphenol (DMP) polymerization was monitored and compared each other through oxygen-uptake experiment. In addition, the effect of catalyst removal using aqueous EDTA on the thermal stability of the prepared polymer was elucidated by thermogravimetric analysis.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

A Study on the Effect of Fertilization Conditions within the Contents of Several Essential Elements in Lettuce (상치의 시비조건에 따른 상치내 몇 가지 필수 무기원소들의 함량에 관한 연구)

  • Kwon, O-Dal;Lee, Jin-Hi;Choi, Soon-Nam;Shin, Young-Mi;Chung, Keun-Hi
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.163-167
    • /
    • 1999
  • To study the effects of chemical and organic fertilizer within the contents of essential elements in the lettuce, in the absence or presence of wood extraction, an experiment was conducted for a period of 10 weeks. The results obtained from the experiment are summarized as follows: 1. The iron contents in the lettuce grown in the chemical fertilized group, were different from those in the organic fertilized group, when the wood extraction was treated. The iron contents in the lettuce increased, due to the wood vinegar treatments, but the modes and degrees were not consistent the various kinds of lettuce. 2. Calcium contents in the lettuce were also increased by wood vinegar treatments, but the modes and degrees were not consistent with the various kinds of lettuce. On the other hand, the Calcium contents in the lettuce grown in the organic fertilized group were reduced by the wood vinegar treatments. 3. The mineral contents within other elements(Manganese, Copper, Zinc) in lettuce, is not variable according to the treatments, or the species of the lettuce.

  • PDF

The Present of State of the Metal and Gold Deposits, Indonesia (인도네시아의 금속광상과 금광상 분포현황)

  • 김인준;이재호;서정률;이사로;김유봉;이규호
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.269-276
    • /
    • 2004
  • The Indonesian Archipelago is located in the southern tip of the Eurasian plate. The diverse subduction system of the Indonesia region records interactions between three megaplates (Eurasian, Indian-Australian, and Pacific plates) and many smaller plates. The geology of Indonesian Archipelago is characterized by many factors such as subduction zone complexes, magmatic arc rocks associated with plate tectonics, the arc granite and volcanic rocks, and the related metamorphic rocks. The base-metal deposits of Indonesia have a great effect on petrochemical character of parent rocks and geotectonic environments. The base-metal deposits can be classified into four types as hosted by felsic-intermediate intrusive rocks, hosted by ultramafic rocks, hosted by volcanic rocks, and hosted by sedimentary rocks. The gold deposits are divided into three types: epithermal gold deposits, porphyry copper associated gold deposits, and alluvial gold deposits. Especially, Indonesian island uc, with its numerous plates tectonic, has an high potential for epithermal gold deposits. Indonesia with many old and present subduction zones and sub-aerial calcalkaline volcanic rocks is a very promising country for epithermal gold mineralization.

The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films (구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향)

  • Lee, Seri;Oh, Seungkeun;Kim, Youngman
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.6
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.