• Title/Summary/Keyword: Coordinate transform

Search Result 191, Processing Time 0.028 seconds

Derivation of Coordinate Transform Formula of Surface Image Velocimetry for Velocity Measurement around Levees (제방 주변의 유속측정을 위한 표면영상유속계의 영상좌표 변환식 유도)

  • Kim, Seo-Jun;Yu, Kwon-Kyu;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.144-144
    • /
    • 2012
  • 하천 제방의 안정성을 평가하기 위해서는 홍수시 제방 주변의 흐름특성을 분석하는 것이 필요하다. 일반적으로 홍수시 유속은 측정된 홍수량을 이용한 단면평균유속을 이용하여 평가를 하고 있기 때문에 제방 주변의 흐름특성을 정확하게 분석하는데 한계가 있다. 이를 개선하기 위해서는 홍수시 제방 주변의 유속을 측정하여야 하는데 접근이 어렵고 위험하기 때문에 봉부자 또는 유속계를 이용한 유속측정이 어려운 실정이다. 이와 같은 경우 제방 주변의 영상 분석을 이용한 표면영상유속계의 활용이 좋은 대안이 될 수 있다. 표면영상유속계의 경우 원거리에서도 줌을 이용하여 영상을 획득할 수 있고, 측정 시간이 짧기 때문에 제방 주변의 유속을 간편하게 측정 가능하다. 하지만 표면영상유속계(SIV)는 영상좌표와 물리좌표 사이의 좌표 변환을 필요로 한다. 종전까지는 일반적으로 8-변수 좌표 변환법이 널리 이용되었으나, 이 방법은 최소한 4점 이상의 참조점이 필요하기 때문에 수면위에 참조점을 설치해야 하는 어려움이 있다. 또한, 내삽을 하는 방법이기 때문에 참조점 내부의 점에 대해서는 비교적 정확한 변환이 가능하지만, 참조점 외부의 좌표들에 대해서는 부정확한 변환이 되는 단점이 있었다. 따라서 본 연구에서는 카메라 모형을 이용하여, 새로운 좌표 변환식을 유도하였다. 이 영상좌표 변환식은 참조점을 이용하지 않으며, 수면과 카메라간의 연직 거리와 카메라의 기울어진 각도만을 이용하여 좌표 변환이 가능한 방법이다. 참조점을 필요로 하지 않기 때문에 측량의 번거로움이 없으며, 변환식내에서 내삽을 하지 않기 때문에 영상 전체에 대해 고른 좌표 변환이 가능한 장점을 지니고 있다.

  • PDF

Experiment on Transform of Cadastral Control Points to the New Korea Geodetic Datum for Connecting with National Geographic Information System (국가 GIS와 연계를 위한 지적기준점의 세계측지계 변환 실험)

  • Song, Dong-Seob;Hwang, Jin-Sang;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.309-317
    • /
    • 2007
  • Cadastral control points in Korea are refered to various origins, for example an early separated small triangulation, a separated small triangulation, a separated control surveying origin and an unified origin. Cadastral map with early separated small triangulation origin have difficulties to connect with national GIS data by refered an unified origin. We determined transformation parameters from old origin to unified origin using 2D conformal transformation method. To evaluate of transformation accuracy, we compared with GPS field surveying results. And we experiment on coordinate transformations with unified results between the local geodetic datum and the new Korea geodetic datum.

3D Dynamics of the Oscillating-Moving Load Acting in the Interior of the Hollow Cylinder Surrounded with Elastic Medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.713-738
    • /
    • 2019
  • In the paper the dynamics of the oscillating moving load acting in the interior of the hollow cylinder surrounded with elastic medium is studied within the scope of the exact field equations of 3D elastodynamics. It is assumed that the oscillating load act on the certain arc of the internal circle of the cylinder's cross section and this load moves with constant velocity along the cylinder's axis. The corresponding 3D dynamic problem is solved by employing moving coordinate system, the exponential Fourier transform and the presentation these transforms with the Fourier series. The expressions of the transforms are determined analytically, however their originals are found numerically. Under the investigations carried out in the paper the main attention is focused on the so-called "gyroscopic effect", according to which, the influence of the vibration frequency on the values of the critical velocity and interface stresses are determined. Numerical results illustrated this effect are presented and discussed. In particular, it is established how the non-axisymmetricity of the problem acts on the influence of the load oscillation on its critical velocity and on the interface stresses.

Performance Estimation for Shipboard Directional Pedestal by Using M&S Methodologies (M&S기법을 활용한 선박용 지향성 요동보상장치 성능 분석)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2018
  • Recently, the tasks assigned to surface ship are becoming diverse and important. In this trend, shipboard directional pedestals are widely used for surveillance and electronic warfare because ships are always under angular motion such as rolling, pitching and yawing. To estimate the performance of pedestal, the motion responses of vessel as well as mechanical characteristics of pedestal should be considered. In this study, both the motion responses of vessel which the pedestal will be mounted and the behavior of 3-axis pedestal are considered. Numerical analysis based on potential theory is used to obtained motion characteristics of vessel and then 6-DOF motions of vessel are simulated under operational condition. 1st-order time delay model and LQR control algorithm are used for modeling of pedestal drive model and control model, respectively. By using coordinate transform, the angular motions which the pedestal should compensate are calculated from the vessel's angular motion. Through these M&S methodologies, time history of pedestal behavior and maximum angular error of each pedestal axis are obtained. Overall M&S results show that 3-axis pedestal compensate the angular motion induced by vessel, efficiently.

A Study on the Synthetic Aperture Radar System Motion Compensation Technique (SAR(Synthetic Aperture Radar)시스템 요동보상기법 연구)

  • Kang, Eun-Kyun;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • In this paper, the image formation by the motion compensation technique for Synthetic Aperture Radar system(SAR) were realized through the computer simulation. The motion compensation technique performed image data with the range compression, the compensation procedure, the azimuth compensation and the noise elimination procedure. The range compression procedure transform the SAR raw data into the frequency domain and correlate with the range reference function and then inversely transform into the time domain. The compensation procedure contain the aircraft fluctuations compensation and the radar image degrading effect elimination procedure which was caused by image formation algorithm itself. The aircraft fluctuations compensation procedure perform the first stage which correct the phase angle and the second stage which calculate the Doppler frequency and determine the coordinate of the received signal. The radar image degrading effect elimination procedure also perform range migration compensation and the image defocussing effect compensation. The azimuth compression procedure transform the compensation data to the frequency domain and correlate with the azimuth reference function. The azimuth correlated data are inversely transformed to the time domain which is called SAR image data. When the above procedure were completed, the image data contains the received signals mixed with noise. The threshold technique was applied to elimination the noise from the mixed image data.

Development of the 3D Rail Profile Reconstruction Method Improving the Measurement Accuracy of Railway Abrasion (레일 마모도의 측정 정밀도 향상을 위한 3차원 레일 프로파일 재구성 기법 개발)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.533-539
    • /
    • 2010
  • The The contactless railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be matched with the cross section of rail, exactly. But, the conventional railway abrasion measurement system is required the post image processing with a camera model and a perspective transform for the exact mapping between the cross section of rail and the coordinate data extracted from a line laser region or the raw image obtained from a camera because the image captured from the camera has an oblique viewpoint. So, the measured rail profile data had limits to the measurement accuracy because of a discontinuity point. In this Paper, we propose the 3D rail profile reconstruction method to increase the accuracy of the railway abrasion measurement system applying the modified camera model and perspective transform to the image obtained from the bidirectional rail.

  • PDF

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

The Nonlinear Motions of Cylinders(I) (주상체의 비선형 운동(I) -강제동요문제, 조파저항문제-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.114-131
    • /
    • 1992
  • In the present work, a two-dimensional boundary-value problem for a large amplitude motion is treated as an initial-value problem by satisfying the exact body-boundary and nonlinear free-surface boundary conditions. The present nonlinear numerical scheme is similar to that described by Vinje and Brevig(1981) who utilized the Cauchy's theorem and assumed the periodicity in the horizontal coordinate. In the present thesis, however, the periodicity in the horizontal coordinate is not assumed. Thus the present method can treat more realistic problems, which allow radiating waves to infinities. In the present method of solution, the original infinite fluid domain, is divided into two subdomains ; ie the inner and outer subdomains which are a local nonlinear subdomain and the truncated infinite linear subdomain, respectively. By imposing an appropriate matching condition, the computation is carried out only in the inner domain which includes the body. Here we adopt the nonlinear scheme of Vinje & Brevig only in the inner domain and respresent the solution in the truncated infinite subdomains by distributing the time-dependent Green function on the matching boundaries. The matching condition is that the velocity potential and stream function are required to be continuous across the matching boundary. In the computations we used, if necessary, a regriding algorithm on the free surface which could give converged stable solutions successfully even for the breaking waves. In harmonic oscillation problem, each harmonic component and time-mean force are obtained by the Fourier transform of the computed forces in the time domain. The numerical calculations are made for the following problems. $\cdot$ Forced harmonic large-amplitude oscillation(${\omega}{\neq}0,\;U=0$) $\cdot$ Translation with a uniform speed(${\omega}=0,\;U{\neq}0$) The computed results are compared with available experimental data and other analytical results.

  • PDF

A study on the Accuracy Analysis of the World Geodetic System Transformation for GIS Base Map and Database (GIS 기본도 및 DB의 세계측지계 좌표변환 정확도 분석에 관한 연구)

  • Cho, Jae-Kwan;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Bo-Mi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.79-85
    • /
    • 2008
  • This study aims to derive a practical coordinate transformation method for the existing geographic information database. After analyzing the status and problems of existing 1/1,000 digital base map and GIS application database, the transformation parameters are estimated and the accuracy of the transformation is determined based on the transformed coordinates. We analyzed the accuracy of a transformation using the published national transformation coefficients as well as the estimated local transformation coefficients using national and urban control points in a study area. In addition, the 1/1,000 digital base map from aerial triangulation is compared with respect to the coordinates of urban control points. Based on the comparison, the biases on the national control points which were used at the time of digital map generation was analyzed. Then, the accuracy of transformed coordinates based on the world geodetic system using local transformation coefficients estimated from urban control points are determined. We also analyzed the transformation accuracy of underground infrastructure database using the same transformation method as the case of 1/1,000 digital base map. Through this study, it was found that the estimation of transformation coefficients by Molodensky-Badekas using urban control points was suitable for a local government. Furthermore, it was obvious that the accuracy of a 2-dimensional affine transformation was comparable to that of 7 parameter transformation for a local area. Applying the coordinate transformation and bias correction, we could transform GIS application database which was built by an offset surveying based on digital base map within the transformation accuracy of 10 cm. Therefore, it was judged that there will not be a big problem on the transformation of the GIS DB to the world geodetic system.

  • PDF

Exploring fraction knowledge of the stage 3 students in proportion problem solving (단위 조정 3단계 학생의 비례 문제 해결에서 나타나는 분수 지식)

  • Lee, Jin Ah;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.1-28
    • /
    • 2022
  • The purpose of this study is to explore how students' fractional knowledge is related to their solving of proportion problems. To this end, 28 clinical interviews with four middle-grade students, each lasting about 30~50 minutes, were carried out from May 2021 to August 2021. The present study focuses on two 7th grade students who exhibited their ability to coordinate three levels of units prior to solving whole number problems. Although the students showed interiorization of three levels of units in solving whole number problems, how they coordinated three levels of units were different in solving proportion problems depending on whether the problems required reasoning with whole numbers or fractions. The students could coordinate three levels of units prior to solving the problems involving whole numbers, they coordinated three levels of units in activity for the problems involving fractions. In particular, the ways the two students employed partitioning operations and how they coordinated quantitative unit structures were different in solving proportion problems involving improper fractions. The study contributes to the field by adding empirical data corroborating the hypotheses that students' ability to transform one three levels of units structure into another one may not only be related to their interiorization of recursive partitioning operations, but it is an important foundation for their construction of splitting operations for composite units.