• Title/Summary/Keyword: Coordinate System

Search Result 2,211, Processing Time 0.026 seconds

High Accurate Cup Positioning System for a Coffee Printer (커피 프린터를 위한 커피 잔 정밀 측위 시스템)

  • Kim, Heeseung;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1950-1956
    • /
    • 2017
  • In food-printing field, precise positioning technique for a printing object is very important. In this paper, we propose cup positioning method for a latte-art printer through image processing. A camera sensor is installed on the upper side of the printer, and the image obtained from this is projected and converted into a top-view image. Then, the edge lines of the image is detected first, and then the coordinate of the center and the radius of the cup are detected through a Circular Hough transformation. The performance evaluation results show that the image processing time is 0.1 ~ 0.125 sec and the cup detection rate is 92.26%. This means that a cup is detected almost perfectly without affecting the whole latte-art printing time. The center point coordinates and radius values of cups detected by the proposed method show very small errors less than an average of 1.5 mm. Therefore, it seems that the problem of the printing position error is solved.

A Design and Implementation of Dynamic Electronic Map Creation System for Mobile phone Map Service Using Raster Method (래스터 방식을 이용한 모바일 전화기용 지도 서비스를 위한 동적 전자 지도 생성 시스템 설계 및 구현)

  • Seo Ii-Soo;Nam In-Gil;Lee Jeong-Bae;Choi Jin-Oh;Kim Mi-Ram
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.151-158
    • /
    • 2005
  • In order to use the existing map data base in the mobile phone, the dynamic creation technique of the radio map which will be able to be converted into the raster image and transmitted was proposed. We transferred the client module functions such as the coordinate conversion, data compression and decoding to server, and made driving of JAVA browser in the mobile phone which has the restricted resources possible for the dynamic creation of the radio map. We made the radio electronic map service possible without map data base for the mobile phone use only by performing the general work of the map at the sever. And we guaranteed the client waiting time less then the limit time by performing the filtering work of the map at the server also. After we input the keyword at the user interface for searching the region or facility, and verified the performance of the proposed technique by confirming that the raster electronic map usable at the mobile phone was created dynamically.

Augmented Reality Using Projective Information (비유클리드공간 정보를 사용하는 증강현실)

  • 서용덕;홍기상
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-102
    • /
    • 1999
  • We propose an algorithm for augmenting a real video sequence with views of graphics ojbects without metric calibration of the video camera by representing the motion of the video camera in projective space. We define a virtual camera, through which views of graphics objects are generated. attached to the real camera by specifying image locations of the world coordinate system of the virtual world. The virtual camera is decomposed into calibration and motion components in order to make full use of graphics tools. The projective motion of the real camera recovered from image matches has a function of transferring the virtual camera and makes the virtual camera move according to the motion of the real camera. The virtual camera also follows the change of the internal parameters of the real camera. This paper shows theoretical and experimental results of our application of non-metric vision to augmented reality.

  • PDF

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Analysis of Color Difference in Facial Reconstruction used Various Flaps (안면부 재건술에서 사용되는 다양한 피판의 색조 비교)

  • Park, Jang Wan;Kim, Eui Sik;Hwang, Jae Ha;Kim, Kwang Seog;Lee, Sam Yong
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • Purpose: Good color match holds a key position in facial reconstruction for good aesthetic result. To correct the wide facial soft tissue defect were usually used the tissue expanded cheek flap, deltopectoral flap or radial forearm free flap. This study is aimed to analyse the color difference after flap surgery by using chromameter. Method: From August 1995 to December 2006, 30 patients underwent flap operations were chosen randomly and evaluated color differences between flap site and adjacent skin. Reconstructive procedures included tissue expanded cheek flap(n = 10), deltopectoral flap(n = 10), and radial forearm free flap(n = 10). The measured sites were flap center within a radius of 1 ㎝ and four points of adjacent skin along the flap margin. The color was quantified in a three dimensional coordinate system $L^*$ (brightness), $a^*$ (redness), $b^*$ (yellowness). Results: There was no significant color difference between the pedicled flaps(tissue expanded cheek flap and deltopectoral flap) and adjacent skin area. On the other hand, color values of the radial forearm free flap were statistically different from those of adjacent skin area. Total color difference(${\Delta}E$) of tissue expanded cheek flap and deltopectoral flap were $7.45{\pm}5.78$ versus $9.41{\pm}7.09$, and that of radial forearm free flap was $11.74{\pm}3.85$. They suggest that pedicled flaps have a potential of better color match than radial forearm free flap. Conclusion: Thus, better esthetic result and satisfaction is more likely to be expected in pedicled flaps as long as it could be applied comparing radial forearm free flap.

Modern Reformation of So-ganui Invented during King Sejong Period and It's Altitude and Azimuth of the Sun Observations (세종시대 창제된 소간의(小簡儀)의 현대적 개조와 태양의 고도 및 방위각 관측)

  • Choi, Hyun-Dong;Kim, Chil-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • The purpose of this study was to explain how extraordinary the scientific technology or our ancestor was from the modern perspective by remodeling the most unique astronomical instrument, So-ganui (小簡儀), developed in the Sejong Period (世宗時代) after being examined with contemporary and the principles of the science and observational technology would be properly understood and measured directly. When measuring the altitude of the sun and azimuth using So-ganui, it was adjusted with the horizontal coordinate system and measured using Jipyeonghwan (地平環), Ipeunhwan (立運環) and Guyhyeong (窺衡). Based such measuring principles, the measurement accuracy proposed using So-ganui are as follows. The remodeled So-ganui produced approximately ${\pm}0.29$ degrees error on average at high altitude while in measuring the azimuth degrees, there was difference of ${\pm}0.35$ degrees. Since the theoretically, the measurement error for So-ganui was ${\pm}0.5$ degrees, the remodeled So-ganui could accurately measure at the high altitude compared to So-ganui from the Sejong period. In the study, So-ganui, which has disappeared, has been remodeled in modern perspective to be used as the educational material to accurately understand the principles of science and measurement technology from the Sejong period. The findings could contribute to raising the reputation in the astronomical observations from the documents from the Sejong period. Furthermore, this study has materialized the celestial and sky our ancestors have viewed with the observational principles of their times, on the computer screen via a webcam, bringing out interest in the traditional science for the students.

An Analysis of the Vector and Inner Product Concepts in Geometry and Vector Curriculum ('기하와 벡터' 교육과정의 벡터와 내적 개념 분석)

  • Shin, BoMi
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.4
    • /
    • pp.841-862
    • /
    • 2013
  • This study analyzed issues in the mathematics curriculum concerning the cognitive development of the vector and inner product concepts in the light of Tall's and Watson's research(Tall, 2004a; Tall, 2004b; Watson et al., 2003; Watson, 2002). Some suggestions in teaching the vector and inner product concepts were elaborated in the terms of these analyses. First, the position vector needs to be represented by an arrow on the coordinate system in order to introduce the component form of a vector represented by a directed line segment. Second, proofs of the vector operation law should be carried out by symbolic manipulations based on the algebraic concept of a vector in the symbolic world. Third, it is appropriate that the inner product is defined as $\vec{a}{\cdot}\vec{b}=a_1b_1+a_2b_2$ (when, $\vec{a}=(a_1,a_2)$, $\vec{b}=(b_1,b_2)$) when it comes to considering the meaning of the inner product relevant to vector space in the formal world. Cognitive growth of concepts of the vector and inner product can be properly induced through revising explanation methods about the concepts in the curriculum in the basis of the above suggestions.

  • PDF

Use of Parametric Generalized Coordinates for Kinematic Constraint Formulation of Low Degree-of-Freedom Joints (저자유도 조인트의 구속조건 생성을 위한 파라메트릭 일반좌표 이용)

  • Lee, Jung Keun;Lee, Chul Ho;Bae, Dae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1261-1267
    • /
    • 2013
  • In multibody mechanical systems, low-degree-of-freedom (DOF) joints such as revolute and translational joints are much more frequently used than high-DOF joints. In order to formulate kinematic constraint equations, especially for low-DOF joints, in an efficient and systematic manner, this paper presents a parametric generalized coordinate formulation as a new approach for describing constraint equations. In the proposed approach, joint constraint equations are formulated in terms of a mixed set of Cartesian and parametric generalized coordinates, which drastically reduces the complexity and computational cost of the partial derivatives of the constraints such as the constraint Jacobian. The proposed formulation is validated using a simple cylinder-crank system with an implicit integrator.

A Numerical Study on Flows Over Two-Dimensional Simplified Vehicle-Like Body (단순화된 2차원 자동차형 물체주위 유동에 관한 수치해석적 연구)

  • 강신형;이영림;유정열;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.277-286
    • /
    • 1989
  • Turbulent flows around two-dimensional vehicle-like bodies in ground proximity are numerically simulated. The Reynolds averaged Navier-Stokes equations with a k-.epsilon. turbulence model are numercally solved, and a body-fitted coordinate system is used. It is shown that the simulation is acceptable in comparison with limitted data measured in the wind-tunnel. According to numerical simulations, drag coefficients are under-estimated and lift coefficients are over-estimated during the model test in the wind-tunnel if the ground is fixed. Such ground effects are reduced as Reynolds number is increased. Reducing the gap between the vehicle and the ground make drag coefficients smaller and lift coefficients larger. The changes in static pressure distributions on the bottom and the rear surface play dominent roles in determination of the drag and the lift of the body in ground proximity. Drag component less than 10% of the total amount is contributed by skin-frictions. When the slant-angle of the body is reduced, the drag shows its minimum value and the lift shows its maximum value at about 22 degree.

Determination of Absolute Coordinates of Permanent GPS Site (GPS 상시관측소의 절대좌표 산정에 관한 연구)

  • 윤홍식;황진상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.415-423
    • /
    • 2001
  • This paper deals with the data processing method relative to reference frames through the calculation of absolute coordinates of permanent GPS site which was established at Sungkyunkwan University. In this paper. we computed the ITRF97 coordinates with high precision (0.0001 ppm) from GPS data analysis. Also, we derived the accurate coordinates referred to WGS84 and Korean Geodetic Datum (KGD) using transformation parameters provided. ITRF97 coordinates were computed by using the GIPSY-OASIS II (GOA II) software and the algorithms for determining the position developed Jet Propulsion Laboratory (JPL). The coordinates referred to WGS84 and KGD were derived from the transformation parameters provided by International Earth Rotation Service (IERS) and National Geography Institute (NGI). The parameters determined by NGI were calculated from the 2000 project of the establishment of geocentric coordinate system. We tested its availability through the comparison of the coordinates obtained from local GPS data analysis.

  • PDF