• Title/Summary/Keyword: Coordinate Estimation

Search Result 203, Processing Time 0.025 seconds

Sample Size Determination and Evaluation of Form Errors

  • Chang, Sung Ho;Kim, Sunn Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.85-98
    • /
    • 1994
  • In current coordinate measuring machine practice, there are no commonly accepted sample sizes for estimating form errors which have a statistical confidence. Practically, sample size planning is important for the geometrical tolerance inspection using a coordinate measuring machine. We determine and validate appropriate sample sizes for form error estimation. Also, we develop form error estimation methods with certain confidence levels based on the obtained sample sizes in various form errors: straightness, flatness, circularity, and cylindericity.

  • PDF

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

A Camera Pose Estimation Method for Rectangle Feature based Visual SLAM (사각형 특징 기반 Visual SLAM을 위한 자세 추정 방법)

  • Lee, Jae-Min;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.

Nozzle Swing Angle Measurement Involving Weighted Uncertainty of Feature Points Based on Rotation Parameters

  • Liang Wei;Ju Huo;Chen Cai
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.300-306
    • /
    • 2024
  • To solve the nozzle swing angle non-contact measurement problem, we present a nozzle pose estimation algorithm involving weighted measurement uncertainty based on rotation parameters. Firstly, the instantaneous axis of the rocket nozzle is constructed and used to model the pivot point and the nozzle coordinate system. Then, the rotation matrix and translation vector are parameterized by Cayley-Gibbs-Rodriguez parameters, and the novel object space collinearity error equation involving weighted measurement uncertainty of feature points is constructed. The nozzle pose is obtained at this step by the Gröbner basis method. Finally, the swing angle is calculated based on the conversion relationship between the nozzle static coordinate system and the nozzle dynamic coordinate system. Experimental results prove the high accuracy and robustness of the proposed method. In the space of 1.5 m × 1.5 m × 1.5 m, the maximum angle error of nozzle swing is 0.103°.

A study on the Bessel geoidal height to improve the accuracy of coordinate transformation (좌표변환의 정확도 향상을 위한 Bessel 지오이드고에 관한 연구)

  • Shin, Bong-Ho;Kang, Joon-Mook;Kim, Hong-Jin;Choi, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.143-151
    • /
    • 1994
  • 3-D coordinates that result form GPS survey are not applied directly in korea because they are based on WGS 84 ellipsoid. Thus they must be transformed into longitude, latitude on the Bessel ellipsoid and orthometric height. Transformation parameters must be determined in order to perform the coordinate transformation. Also, coordinate transformation be preformed on longitude, latitude and ellipsoidal height. First estimation of Bessel geoidal height must be accomplished to acquire Bessel ellipsoidal height This paper suggests accuracy of coordinate transformation according to the estimation method of Bessel geoidal height. Also, This paper suggests that Bessel geoidal height have influence on the coordinates transformation.

  • PDF

A Time-to-go Estimator Design for Proportional Navigation Guided Missiles using Kalman Filters (칼만 필터를 이용한 비례항법유도 도달시간 추정기 설계)

  • Whang, Ick-Ho;Ra, Won-Sang;Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.740-744
    • /
    • 2008
  • In this paper, we propose a new time-to-go estimation filter for PN guided missiles. The proposed estimator is derived based on the approximation of the length of the PNG homing trajectory that we newly introduced using the special coordinate system. The coordinate system is convenient for taking the target movement into account. In addition, compared with the previous time-to-go estimation techniques, the parameters required for evaluating the length can be obtained only with the seeker measurements. Moreover, the seeker measurement error statistics can effectively be considered since our filter is derived based on the Kalman filter theory. Simulation result for a typical anti-ship see-skimming missile homing trajectory shows the excellent performance of the proposed filter.

The Position Estimation of a Car Using 2D Vision Sensors (2D 비젼 센서를 이용한 차체의 3D 자세측정)

  • 한명철;김정관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.296-300
    • /
    • 1996
  • This paper presents 3D position estimation algorithm with the images of 2D vision sensors which issues Red Laser Slit light and recieves the line images. Since the sensor usually measures 2D position of corner(or edge) of a body and the measured point is not fixed in the body, the additional information of the corner(or edge) is used. That is, corner(or edge) line is straight and fixed in the body. For the body which moves in a plane, the Transformation matrix between the body coordinate and the reference coordinate is analytically found. For the 3D motion body, linearization technique and least mean squares method are used.

  • PDF

A Study of Relative Location Estimation between Static Passive RFID Tag and Mobile Robot (정적 RFID 수동태그와 이동로봇의 상대위치인식에 대한 기법연구)

  • Moon W.S.;Ji Y.K.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.892-896
    • /
    • 2005
  • This paper presents method of depriving the relationship between static passive RFID tag and mobile robot In the field of tag-range. We use probabilistic sensor model of RFID reader by experiments. And we proposed estimation techniques by using direction of identification and relative-distance from the sensor model. Corresponding to distribution of identification, we can correct estimated tag position in relative coordinate. Simulation and Experimental Results show that the proposed method can provide good performance and thus be used fer mobile-robot localization.

  • PDF

Stable activation-based regression with localizing property

  • Shin, Jae-Kyung;Jhong, Jae-Hwan;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2021
  • In this paper, we propose an adaptive regression method based on the single-layer neural network structure. We adopt a symmetric activation function as units of the structure. The activation function has a flexibility of its form with a parametrization and has a localizing property that is useful to improve the quality of estimation. In order to provide a spatially adaptive estimator, we regularize coefficients of the activation functions via ℓ1-penalization, through which the activation functions to be regarded as unnecessary are removed. In implementation, an efficient coordinate descent algorithm is applied for the proposed estimator. To obtain the stable results of estimation, we present an initialization scheme suited for our structure. Model selection procedure based on the Akaike information criterion is described. The simulation results show that the proposed estimator performs favorably in relation to existing methods and recovers the local structure of the underlying function based on the sample.

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF