FAAA A A2 A3E 1994 99 8

Sample Size Determination and Evaluation
of Form Errors”

Sung Ho Chang
Dept. of Industrial Engineering, Kum Oh National University of Technology
Sunn Ho Kim

Dept. of Industrial Engineering, Myoung Ji University

Abstract

In current coordinate measuring machine practice, there are no commonly
accepted sample sizes for estimating form errors which have a statistical
confidence. Practically, sample size planning is important for the geometrical
tolerance inspection using a coordinate measuring machine. We determine and
validate appropriate sample sizes for form error estimation. Also, we develop
form error estimation methods with certain confidence levels based on the
obtained sample sizes in various form errors: straightness, flatness, circularity.
and cylindericity.

1. Introduction

The evaluation of form errors (e.g. straightness, flatness, circularity, and
measurements. However, definitions of form errors in the current standards (ISO
1101, ANSI Y 14.3) assume perfect (continuous) measurements, not discrete
measurements. Therefore, there is no commonly accepted method for calculating
form errors using discrete measurements; it is current practice to satisfy the
definitions of the standards using discretely measured points. However, current
practice does not consider the uncertainty of manufactured surfaces. As a result,
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it is not possible to give statistical confidence to the estimated form errors or 1o
suggest statistically reliable minimum sample points. At the same time. the
number of measured points needed to be large enough to provide reliable results.

Theoretically, the minimum number of points to calculate form errors are
straight forward. As an example, a minimum of three points are necessary to git
a straightness error. Two points are used to estimate a straight line and one
point is used to get the information about the uncertainty of the estimated straight
line. If all three measured points lie on the perfect straight line, then there is no
straightness error because the third point does not give any information. If those
three points are not on a straight line, the third point gives information about the
straightness error. However, there are no surfaces or curves whose uncertainty
information (irregularity) can be explained by one point. Therefore, the
theoretical minimum number of three points are not enough to obtain informaticn
about form errors. Additional measurements are needed to get statisticaliv
reliable information. By establishing a statistically reliable minimum, the
manufacturer does not have to measure an inordinate number of points.

Several assessment methods have been developed to assess form errors using
discrete measurements but they do not consider the sample size and statistical
confidence. These assessment methods can be classified by their objective
functions. The conventional least squares (1.S) technique, which can be found in
various introductory regression analysis books [Draper and Smith(1966;, Neter ef.
al. (1985'], minimizes the sum of the squared linear deviations. The minimum
deviation ‘MI)} technique minimizes the sum of the absolute values of the
arithmetic maximum and minimum linear deviations. The minimum average
deviation (MAD’ technique [Shunmugam, 1987 ] minimizes the sum of the absolute
linear deviations. The minimum zone (MZ) technique Murthy and Abdin, 198
minimizes the sum of squared normal deviations. Recently Menq et. al(199¢
suggested the sample size planning method. However, they did not consider the
difference between concerned surfaces. Then, they gave the same sample size
regardless of the concerned surface. '

The different objective functions depend on the estimates of parameters.
General expressions for the parameters of the least square (L.S) principle are
given by Murthy and Abdin(1980; and Kakino and Kitazawa(1978). For the
minimum zone ‘(MZ) principle, Murthy and Abdin(1980) and ElMaraghy et al
{1989 give the estimation of parameters. For the minimum average deviation
principle, Shunmugam(1987) give the estimation of parameters. For the
minimum deviation (MI)) principle, Gota and Lizuka(1977) and Shimokohbe {1984
give the estimation of parameters.
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Each approach obtains the best result satisfying its specific and limited
objective function. These approaches estimate the form errors assuming the
measured points include real maximum peak and valley points of the concerned
surface. As a result, they give different information depending on which points
are measured even on the same surface. Also these approaches do not consider
the characteristics of manufactured surfaces which can have various geometrical
shapes relative to the ideal shape specified on drawings [Weckenmann and
Heinrichowski1985), Bourdet, Clement and Weill(1984)]. In this paper we
develop an alternate approach for determining the appropriate sample size and for
estimating form errors based on the definitions proposed in the previous research
| Chang et. al., 1990/

2. Proposed Approach

We define form error as 6¢ or the function of the surface shape parameter in the
previous research [Chang et. al., 1990]. We usually do not know the real values
of a standard deviation or a surface shape parameter. They are estimated from a
estimated nominal surface. The nominal surface is estimated from sample
measurements. Because reference measuring axes in a CMM are arbitrarily
chosen, the nominal surface is estimated depending on the reference coordinate:
or axes {See Figure 1). Also we do not know the exact values of maximum anc
minimum deviations, then we predict those values. Therefore, there are twn
variations in estimating form errors: 1) variation in possible location of the
nominal surface or feature, and 2) variation within the estimation of standard
deviation which involves probability distribution. We use the linear regression
method to estimate the nominal surface. To use the linear regression method, we
make assumptions based on the fact that machining processes are always
disturbed by various noises which are independent of the form of the surface.
Hence the cumulative effect of these noises is subject to the central limit theorem
and is governed by a Normal distribution [Greenwood and Williamson, 1966 .
Under these assumptions, we can make basic assertions that involve probability
distributions.

L.et our manufactured surface be represented by the functional form

Z, = f(X,.YV,) + ¢
where F(X,.Y,): function of manufactured surface
(X, Y,) = g, +px for simple straightness case)

£, : combined noise
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Reference Measuring Axes

Measured Surface

//

Measuring Part

Estimated Nominal Surface

{ Figure 1 ) Reference measuring axes in a CMM and estimated nominal surface

1 ¢, is a normal random variable with mean zero and variance ¢° (unknown .,
that is,
e.~NI(0, ¢”) E(e;) =0, V() =g".
2. &, and €, are uncorrelated, 7 # 7, so that Covie,, ;) =0
and Z, and Z, . ¢ # j, are uncorrelated. Thus
E(Z) - fLX,,Y)), V(Z) =g
Based on these assumptions, each observation comes from a normal distribution
centered verticallv at the level implied by the proposed model. The variance of
each normal distribution is assumed to be homogeneous.

We can simply use estimated standard deviation for 6¢ or surface shape
parameter for special form of surface function to obtain form errors if there is no
variations. However, we will not know much about the variations of the real
nominal surface and the probability of parameter estimations. Therefore, we use
a prediction interval length that considers the variation of real nominal surface
and the variation of parameter estimation. The prediction interval length (P
can be represented by the function of the sample size, a specified point and an
estimated standard deviation in general linear regression analysis.

Pl = 2% tin—p, 1=al2) * hin, P)*~ MSE
where i n- p, 1—a) : upper {1—a) percentage point of /-distribution with
(n—p) degrees of freedom
h(wn, P,) : function of sample size » and a specified point P,
MSE : estimated variance
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When a certain PI, with given sample size #, confidence level (1—a) and MSE, is
approximately equal to 60, we can say that it is an estimated form error. The
bands of the PI, however, are curvilinear and our objective is to find linear bands
which cover the maximum variations of the nominal surface and its estimatiorn.
The maximum PI is chosen at a given sample size (Figure 2).

Prediction Interval Bands

Y 4

Estimated Line

Interval Bands in
range ¥, and x,

{ Figure 2 ) lllustration of Maximum Prediction Interval Bands

However, the interval estimate of the PI is a random variable because the
sample standard deviation (or ~"MSE) is a random variable. The expected
prediction interval is compared to 66. We can say that PI at that sample size is an
estimation of form error when the expected length of the maximum prediction
interval, at a certain sample size with a certain confidence level, is approximately
equal to 6¢. The upper or lower confidence limits of the surface shape parameter
at that sample size can be used to estimate form error.

The statements above can be represented in mathematical terms as follow ;

PI(P,) = 2%t,, . ..hin P, )V MSE (11

where PI(P.) : length of prediction interval at P,
hin, P,) =11+ P/ (P P)'P, "
P : specified column vector of P
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P : observation design matrix

MSE : estimated variance of least square residuals
n : # of measurements

p : # of parameters estimated

« : confidence level.

Where P, which gives the maximum value of PI is chosen among P.
Since the residual error variance (MSE) follows a Chi-square distribution

(n=p)MSE__ .
; ey )‘v

a

EWMSE =% E 1]
Nur—p

the expected length of the prediction interval ( £ [PI]) can be represented as
follows

E(PL =2t .. .. .hin P)—Z—FE[X, e
Nn—p
where hin, P,) = i1+ P/ (P P) ' P,)'"
f _ Llim—p4+1)/2]
Elte ) = =Fo-prel Ve

I'(n) = Gamma function

= f x" e tdx.

If we let E[PI] = 66, we can determine the appropriate sample size needed to
estimate the form error with the proposed form error definition with any degree
of confidence. Alternatively we can determine appropriate confidence levels
when the sample size is given which satisfies

oo h(n P)) e = 3 (3
Nu—p

In this paper we are only considering sample size determination when the
confidence level is given for straightness, flatness, circularity, and cylindericity
errors. The proposed approach for determining sample size and for estimating
form errors not only satisfies the proposed definitions but also accounts for proces:
variation in the estimating procedure.
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3. Sample Size Determination

In this section, we explain the procedure for determining sample size using the
maximum prediction interval approach for various functional forms. Observation
matrix P is constructed with the assumption that each measurement is equi-
distance in every dimension (observations form a grid).

3.1 Simple Straight Line Function
The general simple straight line regression function from sample size # is
represented by

Y =b, +b X.

In the simple straight line case, the maximum value of 2(#n, P,) can be obtained at

one of two end points. For example, when # = 3:
P, =(1, —1) or (1,1

hin, P =11+ P (P P)'P,}"* =135

Likewise we obtain the maximum values of A(#n, P,) for different sample sizes.

We find appropriate sample sizes which satisfy:

‘ ElX..,.
:zzrﬁ_’.la’h(nst))'_—/[_“?pJ_-‘zﬁ (4
N

where 1- « : confidence coefficient of the prediction interval.

The appropriate sample sizes for 95% (a = 0.05) and 99% (a = 0.01) confidence
for the simple straight line function are 7 and 24. These sample sizes are found
by increasing the sample size and searching the value of E[PI]/¢ which is greater
than or equal to 6.

3.2 Second Order Polynomial Curve Function
The general second order polynomial regression function from sample size # is
represented by

Y =b +b X +b,X"
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The maximum value of 2(xn, P,) will be 1.396 when # =4. In the same way we
can get the maximum value of hkin, P,) for different sample sizes. The
appropriate sample sizes with 95% and 99% confidence for the second order
polynomial curve function with the same procedure in the simple straight line
function are 9 and 36.

3.3 Simple Plane Function

The general simple plane regression function from sample size » is represented
by

Z=b +bX+0bY.

As an example, the maximum value of #(%n, P,) will be 1.323 when » = 4. In the
same way, we can get the maximum value of %(s, P.) for different sample sizes.
The result is similar to the simple straight line function except for the number of
parameters to be estimated. The appropriate sample sizes with 95% and 99°.
confidence for the simple plane function are 8 and 25.

3.4 Second Order Surface Function
In this case we consider only the specific form of a surface

Z=b +bX+bX +6bY.
As an example, the maximum value of #(%, P,) will be 1.414 when # =5. In the
same way, we can get the maximum value of #(»n, P,) for different sample sizes.
The result is similar to the simple straight line function except for the number of
parameters. The appropriate sample sizes with 95% and 99°% confidence for the
special second surface function are 9 and 36.

3.5 Circular Function

The linearized deviation {Figure 3) is used [Shunmugam, 1986] to estimate the
circle from #n observations which are represented by polar coordinates (7., §,). In
(Figure 3}, point 1) represents the XY coordinate origin and also represents the
origin of measured circle set by a CMM. Point O, represents the origin of
estimated circle. Deviation, ¢,, represents the distance from the measured point
P to the estimated circle in the direction to the origin set by a CMM.

¢, =v, = (R, + x,Cosl, 4+ v,Sint),) {5:
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where R, = radius of the estimated circle
X, ¥o = coordinates of origin of the estimated circle.

P(?’,‘,G")

estimated circle

——

{ Figure 3 ) Linearized Deviation from Circle

Then, the desired regression function can be written as follows:
v, = R, + x,Cos@; + ¥, Sind, (6)

and if Y=»,.6,=R,.b, =x.b =y, X, =Cosf, and X, =Sin0., because
circularity is the variation of the radius of the estimated circle, then

Y =b, +b, X, +5.X. (7

Because Cosf cannot be represented by the linear combination of Sin# and there
are three parameters to be estimated, Eq.(7) is exactly same as the simple plane
function. However, sample points planning is different from the simple plane
function, the appropriate sample sizes with 95% and 99% confidence for circular
function are 7 and 22. Because we do not have to worry about balanced
measurement in a circle, the number of measurements in a circular function is
fewer than a simple plane function.
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3.6 Cylindrical Function

The linearized deviation {(Figure 4) is used [Shunmugam, 1986] to estimate the
cylinder form » observations which are represented by cylindrical coordinates (7 .,
0., z,). In (Figure 4), point 0 represents the origin of XY Z coordinate and also
represents the origin of the circular section of cylinder set by a CMM. Point ()
represents the origin of the estimated cylinder. Point O; represents the origin of
any circular section of the estimated cylinder. Deviation, ¢;, represents the
distance from the measured point P, to the estimated cylinder in the direction of
the origin set by a CMM when the point P, is projected to XY plane.

Axis of cylinder

x, +1,z,
¥+ om oz,
4 4\ /
Pitr,. 0,

Estimated Cylinder

( Figure 4 ) Linearized Deviation from Cylinder

We conducted real part measurements using the CMM to assess the straightness
and flatness errors. This experiment was performed using Sheffield Cordax RS-
30 DCC CMM. A 165mm long rectangular bar was measured in increment of 1
m. Based on these measurements we concluded that its straightness error is
approximately 0.006 mm. We collected sample sizes 3 to 25 from these data with
almost equi-interval. For each sample size, we estimate 95% and 99°% confidence
straightness errors (Figure 5). A 200#»m long bar was measured in the same way
and the estimated real straightness error was 0.017 m»m. Sample sizes 4 to 36, with
almost equi-interval, were collected. These estimated straightness errors are
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shown in (Figure 6>. A 30 X 60#um plate was measured in the same way and the
estimated real flatness was 0.010m».  Sample sizes of 9, 12, 16, 20, 24, 30, 36, 42,
and 49 with almost equi-interval (grid type measurements), were collected.

These estimated flatness errors are shown in (Figure 7).
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{ Figure 5 ) Variation of Estimated Straightness Error according to the sample size for

165 mm long bar
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{ Figure 8 ) Variation of Estimated Straightness Error according to the sample size for

200 mm long bar
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{ Figure 7 ) Variation of Estimated Straightness Error according to the sample size for
60 X 30 mm plate

The estimated straightness and flatness errors have a tendency to decrease
when the sample size is increased even though there are some fluctuations. The
estimated flatness errors have a tendency to underestimate because of the large
deviations in x axis direction. We expected those fluctuations because our form
error estimation approach uses v MSE . Even though we did not get the exact
value of a straightness or flatness errors at the desired sample size, we got
estimated values at the desired sample size especially with 99% confidence.

4. Conclusion

This paper has presented a procedure for determining the appropriate sample
size and a formulation for evaluating form errors using a CMM. This new
approach has the following characteristics.

1) It determines the sample size with a new criterion which is applied to th:
expectation of prediction interval with various confidence levels (95% and
99%..

2) It can be used to determine the confidence level when the sample size i3

given.
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3) It uses the least squares criterion to estimate the desired feature in functional
form.

4) It can be used to calculate Type I and I errors when the specification is given
because it is statistically well defined.

The results of testing and verifying of this new approach are as follows.

1) It was carefully tested for determining the sample size for straightness,
flatness, circularity and cylindericity.

2) The formulation was carefully tested for determining the straightness and
flatness errors from simulated data and real measurement data.

3) Finally and most importantly, the results were tested and shown to be
successful and satisfactory.

The approach proposed in this paper can provide a useful basis for further
research for estimating form errors using the CMM. The formulations developed
for straightness and flatness errors can be extended to a higher order of
dimensional geometric tolerances. Consequently, the formulation can be
established to estimate true geometric errors using the CMM.
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