• Title/Summary/Keyword: Coordinate Control

Search Result 748, Processing Time 0.037 seconds

Unknown Inputs Observer Design Via Block Pulse Functions

  • Ahn, Pius
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.205-211
    • /
    • 2002
  • Unknown inputs observer(UIO) which is achieved by the coordinate transformation method has the differential of system outputs in the observer and the equation for unknown inputs estimation. Generally, the differential of system outputs in the observer can be eliminated by defining a new variable. But it brings about the partition of the observer into two subsystems and need of an additional differential of system outputs still remained to estimate the unknown inputs. Therefore, the block pulse function expansions and its differential operation which is a newly derived in this paper are presented to alleviate such problems from an algebraic form.

Instantaneous Compensating Current Control of Active Power Filters with Phase Angle Detecting Method Under Unbalance Power System (불평형 전원 시스템하의 위상각 검출에 의한 능동전력필터의 순시보상 전류제어)

  • 정영국
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.752-755
    • /
    • 2000
  • This paper describes a new algorithm for active power filters which can be control source current symmetrically under unbalanced condition in power system. Positive sequency voltage is detected by symmetrical coordinate method and compensating reference current of active power filters is calculated using by accurate phase angle information of positive sequency voltage. The basic principle of the proposed method is described in detail and the conventional and proposed phase detecting methods are compared and discussed through the simulation results.

  • PDF

A study of effective filter algorithms for multi-target tracking (다중표적추적을 위한 효과적인 필터 알고리듬에 대한 연구)

  • 이동관;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.99-99
    • /
    • 2000
  • An effect ive filter algorithm that can manage radar beam pointing efficiently is needed to track multi-target in the air. For effective beam management the filter has lobe good enough to predict future position of target and based on this filter output radar beam is control led to point toward the predicted target position in the air. In this paper, we investigate the ${\alpha}$-${\beta}$ filter known for its brief filter structure with the steady-state Kalman filter gain, the ruv filter, and the coordinate-transformed filter that can decouple the measurement noise variance.

  • PDF

A Control Scheme for Stabilizing a Two-Axes Antenna System (이축 안테나 시스템의 안정화를 위한 제어 기법)

  • Lim, Joong-Soon;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.209-212
    • /
    • 1987
  • This paper presents a control scheme to stabilize a two-axes microwave antenna system which is located on a ship and is subject to roll, pitch and yaw(RPY) motions. The scheme first computes the compensated angular positions of the antenna for RPY disturbances through coordinate transformations, and then use a servo con roller of PID type for each axis to track the compensated position command with a good transient behavior.

  • PDF

Kinematic jacobian uncertainty compensation using neural network (신경회로망을 이용한 기구학적 자코비안의 불확실성 보상 알고리즘)

  • Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1820-1823
    • /
    • 1997
  • For the Cartesian space position controlled robot, it is required to have the accurate mapping from the Cartesian space to the joint space in order to command the desired joint trajectories correctly. since the actual mapping from Cartesian space to joint space is obtained at the joint coordinate not at the actuator coordinate, uncertainty in Jacobian can be present. In this paper, two feasible neural network schemes are proposed to compensate for the kinematic Jacobian uncertainties. Uncertainties in Jacobian can be compensated by identifying either actuator Jacobian off-line or the inverse of that in on-line fashion. the case study of the stenciling robot is examined.

  • PDF

Optimum Design of a Micro-fluidic Oscillator (유체 진동자의 최적 설계)

  • 노유정;윤성기;김문언
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.22-30
    • /
    • 2004
  • A micro-fluidic oscillator is used to control a linear actuator in a dynamic microsystem. The pressure difference at its two output ports causes the linear actuator to move, and it is a standard of judging the performance of the oscillator. The performance can be improved by optimizing the geometry of the oscillator, which has to enable fluid jet to switch at low inlet velocity. For this, in this study the relationship between the pressure coefficient (difference) and geometric parameters is obtained through the analysis using the software FLUENT. From the results the optimized model that maximize the output pressure difference is obtained by using a cyclic coordinate method that is one of optimization methods. As a result not only the performance is improved, but also the working range is more widen.

Elliptic coordinate of connection point for collision-free path planning based on linear parametric curve (타원 궤적 연결점을 이용한 일차매개곡선에 기반한 충돌회피 궤적 계획)

  • 남궁인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1128-1131
    • /
    • 1996
  • The collision-free path planning presented here uses linear parametric curve with one intermediate connection point between start and target points. The algorithm, in which connection point is organized in elliptic chord.(.theta., .delta.), maps objects in Euclidean Space into images in CPS through intersection check between path and obstacles a process defined as GM. Elliptic locus has special property that the total distance between focus points through a point on ellipse is the same regardless of .theta.. Hence by locating the start and target points to focus points of ellipse, and organizing connection point in elliptic coordinate, the .delta.-axis of CPS represents length of path. The GM of EWS requires calculation of interference in circumferential direction only. The procedures for GM is developed which include categorization of obstacles to reduce calculation amount. Simulations of GM of EWS, on a PC with Pentium/90MHz, is carried out to measure performance of algorithm and the results are reported on a table. The simulations are done for number of cases with different number of obstacles and location of start/target points.

  • PDF

Object Recognition using Smart Tag and Stereo Vision System on Pan-Tilt Mechanism

  • Kim, Jin-Young;Im, Chang-Jun;Lee, Sang-Won;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2379-2384
    • /
    • 2005
  • We propose a novel method for object recognition using the smart tag system with a stereo vision on a pan-tilt mechanism. We developed a smart tag which included IRED device. The smart tag is attached onto the object. We also developed a stereo vision system which pans and tilts for the object image to be the centered on each whole image view. A Stereo vision system on the pan-tilt mechanism can map the position of IRED to the robot coordinate system by using pan-tilt angles. And then, to map the size and pose of the object for the robot to coordinate the system, we used a simple model-based vision algorithm. To increase the possibility of tag-based object recognition, we implemented our approach by using as easy and simple techniques as possible.

  • PDF

Robot motion planning for time-varying obstacle avoidance using distance function (거리 함수를 이용한 로보트의 시변 장애물 회피 동작계획)

  • 전흥주;고낙용;남윤석;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1034-1039
    • /
    • 1991
  • A robot motion planning algorithm for time-varying obstacle avoidance is proposed. The robot motion planning problem is replaced with the optimization problem by using the distance function with the divided configuration space. To divide the configuration space, the polar coordinate system is used. For each divided configuration space, the admissible region where the robot can reach without collisions is obtained using the distance function. For an object moving in a plane, the admissible region is described by linear constraints on the polar coordinate system. A numerical algorithm that solves the optimization problem is shown and the computer simulation is carried out.

  • PDF

Eliminating the Neutral Current by the Power Compensator without using Energy Storage Elements (에너지저장요소를 사용하지 않는 전력보상기에 의한 중성선 전류의 제거)

  • Kim, Hyo-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 1999
  • This paper proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers qq, qr were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of a three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storge element.

  • PDF