• Title/Summary/Keyword: Cooperative protocol

Search Result 222, Processing Time 0.019 seconds

Cooperative Multi-Hop Transmission Protocol with Incremental Relaying Strategy over Rayleigh Fading Channel

  • Duy, Tran Trung;An, Chong-Koo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2012
  • In this paper, we propose a novel protocol called Cooperative Multi-hop transmission using Incremental Relaying (CMIR). We evaluate the performance of the CMIR protocol by deriving expressions for the average end-to-end outage probability and the average number of transmissions. Monte Carlo simulations are presented to verify the accuracy of the theoretical analyses.

Design of Cooperative Communication Protocol for UWB-based Distributed MAC Systems (UWB 기반 Distributed MAC 시스템을 위한 협력 통신 프로토콜 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.460-469
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, we propose a novel cooperative communication protocol adaptive to current UWB link transmission rate. The proposed cooperative communication protocol has compatibility with current WiMedia D-MAC and Wireless USB standard and is executed at each device according to a Relay Node Selection (RNS) criterion.

Optimal Power Allocation and Relay Selection for Cognitive Relay Networks using Non-orthogonal Cooperative Protocol

  • Lan, Peng;Chen, Lizhen;Zhang, Guowei;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2047-2066
    • /
    • 2016
  • In this paper, we investigate joint power allocation and relay selection (PARS) schemes in non-orthogonal cooperative protocol (NOCP) based cognitive relay networks. Generally, NOCP outperforms the orthogonal cooperative protocol (OCP), since it can provide more transmit diversity. However, most existing PARS schemes in cognitive relay networks focus on OCP, which are not suitable for NOCP. In the context of NOCP, we first derive the joint constraints of transmit power limit for secondary user (SU) and interference constraint for primary user (PU). Then we formulate optimization problems under the aforementioned constraints to maximize the capacity of SU in amplify-and-forward (AF) and decode-and-forward (DF) modes, respectively. Correspondingly, we derive the closed form solutions with respect to different parameters. Numerical results are provided to verify the performance improvement of the proposed PARS schemes.

An Energy Saving Cooperative Communications Protocol without Reducing Spectral Efficiency for Wireless Ad Hoc Networks

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.107-112
    • /
    • 2009
  • Spectral efficiency of current two-phase cooperative communications protocols is low since in the second time the relay forwards the same signal received from the source to the destination, the source keeps silent in this time. In this paper, we propose a novel cooperative communications protocol where the signal needed to transmit to the destination is sent in both phases, the source and the relay also transmit different signal to the destination thus no loss of spectral efficiency. This protocol performs signal selection based on log-likelihood ratio (LLR) at relay and maximum likelihood (ML) detection at destination. While existing protocols pay for a worse performance than direct transmission in the low SNR regime which is of special interest in ad hoc networks, ours is better over the whole range of SNR. In addition, the proposal takes advantages of bandwidth efficiency, long delay and interference among many terminals in ad hoc network. Simulation results show that the proposed protocol can significantly save total energy for wireless ad hoc networks.

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas

  • Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joan
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.257-265
    • /
    • 2011
  • In this paper, a cooperative relaying protocol called soft-decision-and-forward (SDF) with multiple antennas in each node is introduced. SDF protocol exploits the soft decision source symbol values from the received signal at the relay node. For orthogonal transmission (OT), orthogonal codes including Alamouti code are used and for non-orthogonal transmission (NT), distributed space-time codes are designed by using a quasi-orthogonal space-time block code. The optimal maximum likelihood (ML) decoders for the proposed protocol with low decoding complexity are proposed. For OT, the ML decoders are derived as symbolwise decoders while for NT, the ML decoders are derived as pairwise decoders. It can be seen through simulations that SDF protocol outperforms AF protocol for both OT and NT.

Performance Analysis of Hybrid Decode-Amplify-Forward Incremental Relaying Cooperative Diversity Protocol Using SNR-Based Relay Selection

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.703-709
    • /
    • 2012
  • In this paper, we propose a hybrid decode-amplify-forward incremental cooperative diversity protocol using SNR-based relay selection. In the proposed protocol, whenever destination unsuccessfully receives the source's signal, one of relays that exploit hybrid decode-amplify-forward technique is chosen to retransmit the signal. We derive approximate closed-form expressions of outage probability and average channel capacity. Monte-Carlo simulations are presented to verify the theoretical results and compare the performance of the proposed protocol with the direct transmission protocol and conventional incremental relaying protocols.

A Multi-hop Cooperative Transmission Protocol in Mobile Ad-hoc Wireless Networks (모바일 애드혹 무선 네트워크에서 멀티 홉 협력 전송 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • In this paper, we propose a multi-hop cooperative transmission protocol over Rayleigh fading channels. In the proposed protocol, the multi-hop cooperative transmission is used to improve the system performance. Due to broadcast nature, we do not limit the receiving node to be only the next node, but the destination and all the nodes between the transmitting node and the destination. The proposed protocol can hence save the average transmit power, compared with multi-hop direct transmission protocol due to the skipped transmissions from some intermediate nodes or chosen relays. The proposed scheme is implemented and evaluated in mobile ad-hoc wireless networks.

Performance Analysis of Two-way Cooperative ARQ Protocol Using Network Coding (네트워크 부호화를 사용한 양방향 협력 ARQ 프로토콜의 성능 분석)

  • Byun, Il-Mu;Lee, Hyung-Yeol;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.972-979
    • /
    • 2008
  • Two-way relay channel is a bidirectional cooperative communication channel that two terminals communicate each other with the help of a relay. In the previous cooperative communication schemes, a relay uses two divided resources for bidirectional transmission. When a network coding is used at a relay, the relay can transmit bidirectional data to two terminals simultaneously using one resource only. Thus the throughput of this scheme is greater than that of the previous scheme. In this paper, we showa two-way cooperative ARQ protocol using network coding and the throughput of this protocol is analyzed using a state diagram.

Multihop Transmission Protocol Using Cooperative Diversity over Rayleigh Fading Channel

  • Duy, Tran Trung;Kim, Jong-Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • In this paper, we propose a novel cooperative routing protocol (NCRP) for wireless networks. The proposed protocol uses cooperative transmission to improve end-to-end outage probability. The broadcast nature ensures that the destination can receive a packet from the source or from the relays and if it cannot correctly decode the packet, the successful relays will start a retransmission. The NCRP protocol can skip some transmissions from the intermediate relays, thereby reducing the total power consumption. Theoretical results are derived and verified by simulation results.

Energy-Efficient Cooperative Medium Access Control (MAC) Protocol for Wireless Sensor Networks

  • Ahmed, Mohammad Helal Uddin;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.267-268
    • /
    • 2011
  • Recent research activities in cooperative communication focus on achieving energy efficiency and reliability. Relay selection strategy for cooperative communication improves the performance significantly. However, due to imbalance consumption of power, network might die earlier and more than 90% energy remains unused. In this paper, we provide a framework of an energy-efficient medium access control protocol that minimizes these problems and improves energy efficiency.