• Title/Summary/Keyword: Cooperative communications

Search Result 407, Processing Time 0.024 seconds

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Diversity-Multiplexing Tradeoff Analysis of Wireless Multiple-Antenna Cooperative Systems in General Fading Channels

  • Xu, Kun;Gao, Yuanyuan;Yi, Xiaoxin;Zhang, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3026-3045
    • /
    • 2012
  • In this paper, diversity-multiplexing tradeoff (DMT) of three-user wireless multiple-antenna cooperative systems is investigated in general fading channels when half-duplex and decode-and-forward relay is employed. Three protocols, i.e., adaptive protocol, receive diversity protocol, and dual-hop relaying protocol, are considered. The general fading channels may include transmit and/or receive correlation and nonzero channel means, and are extensions of independent and identically distributed Rayleigh or Rician fading channels. Firstly, simple DMT expressions are derived for general fading channels with zero channel means and no correlation when users employ arbitrary number of antennas. Explicit DMT expressions are also obtained when all users employ the same number of antennas and the channels between any two users are of the same fading statistics. Finally, the impact of nonzero channel means and/or correlation on DMT is evaluated. It is revealed theoretically that the DMTs depend on the number of antennas at each user, channel means (except for Rayleigh and Rician fading statistics), transmit and/or receive correlation, and the polynomial behavior near zero of the channel gain probability density function. Examples are also provided to illustrate the analysis and results.

A Cooperative Communication Technology for Rapid Emergency Alert Broadcast (신속한 재난경보 방송을 위한 협력통신 기법)

  • Song, Mihwa;Chang, Sekchin;Lee, Yongtae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.464-467
    • /
    • 2015
  • The CBS functionality is defined for emergency alert service in cellular systems. Previously, a cooperative communication technique was proposed for more reliable CBS functionality. However, the relays for cooperative communications may fail in receiving emergency message, which may cause a critical latency. Therefore, we propose a novel cooperative communication technology in this letter, which incudes additional T-DMB functionality in relays. Analytical and empirical evaluations confirm that the proposed method is very suitable for rapid emergency alert broadcast.

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.

Design and evaluation of a cluster-based fuzzy cooperative caching method for MANETs (이동 애드-혹 망을 위한 클러스터 기반 퍼지 협력 캐싱 방법의 설계 및 평가)

  • Lee, Eun-Ju;Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.269-285
    • /
    • 2011
  • Caching of frequently accessed data in mobile ad-hoc networks is a technique that can improve data access performance and availability. Cooperative caching, which allows sharing and coordination of cached data among several clients, can further enhance the potential of caching techniques. In this paper, we propose a cluster-based fuzzy cooperative caching method for mobile ad-hoc networks. The performance of the proposed caching method is evaluated through an analytical model and is compared to that of other cooperative caching methods.

A Full Rate Dual Relay Cooperative Approach for Wireless Systems

  • Hassan, Syed Ali;Li, Geoffrey Ye;Wang, Peter Shu Shaw;Green, Marilynn Wylie
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.442-448
    • /
    • 2010
  • Cooperative relaying methods have attracted a lot of interest in the past few years. A conventional cooperative relaying scheme has a source, a destination, and a single relay. This cooperative scheme can support one symbol transmission per time slot, and is caned full rate transmission. However, existing fun rate cooperative relay approaches provide asymmetrical gain for different transmitted symbols. In this paper, we propose a cooperative relaying scheme that is assisted with dual relays and provides full transmission rate with the same macro-diversity to each symbol. We also address equalization for the dual relay transmission system in addition to addressing the issues concerning the improvement of system performance in terms of optimal power allocations.

Performance of Distributed MISO Systems Using Cooperative Transmission with Antenna Selection

  • Park, Jong-Hyun;Kim, Jae-Won;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • Performance of downlink transmission strategies exploiting cooperative transmit diversity is investigated for distributed multiple-input single-output (MISO) systems, for which geographically distributed remote antennas (RA) in a cell can either communicate with distinct mobile stations (MS) or cooperate for a common MS. Statistical characteristics in terms of the signal-to-interference-plus-noise ratio (SINR) and the achievable capacity are analyzed for both cooperative and non-cooperative transmission schemes, and the preferred mode of operation for given channel conditions is presented using the analysis result. In particular, we determine an exact amount of the maximum achievable gain in capacity when RAs for signal transmission are selected based on the instantaneous channel condition, by deriving a general expression for the SINR of such antenna selection based transmission. For important special cases of selecting a single RA for non-cooperative transmission and selecting two RAs for cooperative transmission among three RAs surrounding the MS, closed-form formulas are presented for the SINR and capacity distributions.

Rate Bounds for MIMO Relay Channels

  • Lo, Caleb K.;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • This paper considers the multi-input multi-output (MIMO) relay channel where multiple antennas are employed by each terminal. Compared to single-input single-output (SISO) relay channels, MIMO relay channels introduce additional degrees of freedom, making the design and analysis of optimal cooperative strategies more complex. In this paper, a partial cooperation strategy that combines transmit-side message splitting and block-Markov encoding is presented. Lower bounds on capacity that improve on a previously proposed non-cooperative lower bound are derived for Gaussian MIMO relay channels.

Development of energy-saving lighting system based on cooperative control of sensors (협력제어센서기반 에너지 절감형 조명시스템 개발)

  • Lee, Hyunjae;Lee, Sang-Won;Bae, SungHyun;Jeong, Jong-Hyeog;Woo, Dong Sik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.357-358
    • /
    • 2019
  • 본 논문에서는 조도센서와 마이크로웨이브센서 기반의 협력제어를 통하여 기존대비 35%P 전력절감이 가능한 에너지 절감형 스마트 LED 조명시스템에 대하여 기술하였다. 제안된 시스템은 센서모듈과 LED조명, 무선전송 모듈이 분리된 형태로 인지기반 조명 제어를 통하여 ESCO 사업에 적합한 에너지 절감형 융합 조명 시스템에 다양하게 활용될 수 있다.

  • PDF