• Title/Summary/Keyword: Cooperative Robot

Search Result 169, Processing Time 0.027 seconds

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Robot Development Trend and Prospect (신 성장동력의 로봇개발 동향과 전망)

  • Kim, Sung Woo
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2017
  • The robot imitates humans and recognizes the external environment and judges the situation. The robot is a machine that operates autonomously. Robots are divided into manufacturing robots and service robots. Service robots are classified as professional service robots and personal service robots. Because of the intensified competition of productivity in manufacturing industries, rising safety issues, low birth rate and aging, the robots industry is emerging. Recently, the robot industry is a complex of advanced technology fields, and it is attracting attention as a new industry where innovation potential and growth potential are promising. IT, BT, and NT related elements are fused and implemented, and the ripple effect is very large. Due to changes in social structure and life patterns, social interest in life extension and health is increasing. There is much interest in the medical field. Now the artificial intelligence (AI) industry is growing rapidly. It is necessary to secure global competitiveness through strengthening cooperation between large and small companies. We must combine R&D investment capability and marketing capability, which are advantages of large corporations, and robotic technology. We need to establish a cooperative model and secure global competitiveness through M&A.

A Study on the Parallel Escape Maze through Cooperative Activities of Humanoid Robots (인간형 로봇들의 협력 작업을 통한 미로 동시 탈출에 관한 연구)

  • Jun, Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1441-1446
    • /
    • 2014
  • For the escape from a maze, the cooperative method by robot swarm was proposed in this paper. The robots can freely move by collecting essential data and making a decision in the use of sensors; however, a central control system is required to organize all robots for the escape from the maze. The robots explore new mazes and then send the information to the system for analyzing and mapping the escaping route. Three issues were considered as follows for the effective escape by multiple robots from the mazes in this paper. In the first, the mazes began to divide and secondly, dead-ends should be blocked. Finally, after the first arrivals at the destination, a shortcut should be provided for rapid escaping from the maze. The parallel-escape algorithms were applied to the different size of mazes, so that robot swarm can effectively get away the mazes.

A Study on the Suitability Analysis of Welding Robot System for Replacement of Manual Welding in Ship Manufacturing Process (선박 제조 공정 분야에서 수용접 대체를 위한 용접 로봇 시스템 도입의 적합성 분석 연구)

  • Kwon, Yong-Seop;Park, Chang-Hyung;Park, Sang-Hyun;Lee, Jeong-Jae;Lee, Jae-Youl
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.799-810
    • /
    • 2022
  • Welding work is a production work method widely used throughout the industry, and various types of welding technologies exist. In addition, many methods are being studied to automate these welding operations using robots, but in the ship manufacturing field, welding such as painting, cutting, and grinding is also the most common operation, but the manual operation ratio is higher than in other industries. Such a high manual labor ratio in the field of ship manufacturing not only causes quality problems and production delays according to the skill of workers, but also causes problems in the supply and demand of manpower. Therefore, this paper analyzed the reason why the automation rate is low in welding work at ship manufacturing sites compared to other industries, and analyzed the production process and field environment for small and medium-sized ship manufacturing companies that repeatedly manufactured with a small quantity production method. Based on the analysis results, it is intended to propose a robot system that can easily move between workplaces and secure uniform welding quality and productivity by collaborating simple welding tasks with humans. Finally, the simulation environment is constructed and analyzed to secure the suitability of robot system application to current production site environment, work process, and productivity, rather than to develop and apply the proposed robot system. Through such pre-simulation and robot system suitability analysis, it is expected to reduce trial and error that may occur in actual field installation and operation, and to improve the possibility of robot application and positive perception of robot system at ship manufacturing sites.

Effects of SW Training using Robot Based on Card Coding on Learning Motivation and Attitude (카드 코딩 기반의 로봇을 활용한 SW 교육이 학습동기 및 태도에 미치는 영향)

  • Jun, SooJin
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.4
    • /
    • pp.447-455
    • /
    • 2018
  • The purpose of this study is to investigate the effects of SW education using robot based on card coding on learning motivation and attitude of elementary school students. To do this, we conducted 8-hour SW education based on the CT concept of sequence, repetition, event, and control using the Truetrue, which is coded by command card for the 3rd grade of elementary school students. For the experiment, we examined the learning motivation for SW education and the attitude toward SW education based on the robot in advance. As a result, the students' motivation to learn SW education showed a statistically significant improvement. In addition, the attitude toward robot-based SW education improved statistically significantly as "good, convenient, interesting, easy, friendly, active, special, understandable, easy, simple". These results are expected to contribute to the expansion of education through various approaches of SW education.

Mobile Robot-based Leak Detection and Tracking System for Advanced Response and Training to Hazardous Materials Incidents (화학물질 저장시설의 사고대응 및 훈련을 위한 로봇기반 누출감지 및 추적시스템)

  • Park, Myeongnam;Kim, Chang Won;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.17-27
    • /
    • 2019
  • In recent years, dangerous materials and gas leak accidents have been frequently occurred. The hazardous materials storage facility accidents are not rapidly controlled when a leak is detected, unlike other chemical plants can be controled. Externally, the human has to approach and respond to the source of leaking directly. As a result, the human and material damage are likely to larger result in the process. The current approach has been passive response after ringing the alarm. In this study, the suggested tracking system of the leak resource is designed system to track the resource actively by utilizing the mobile sensor robot platform, which can be made easily through recent rapid development technology, is verified through prototype system. Thus, a suggested system should pave the way for minimizing the spread and damage of the accident based on the exact site situation of the initial leak and quick and early measures.

ROBOPPRESSO: Design and Implementation of Robot-Barista Services Using COBOT and IoT (ROBOPRESSO: 협동로봇과 IoT 기술을 활용한 로봇바리스타 서비스의 설계 및 구현)

  • Lee, Song-Joo;Kim, Dong-Hyun;Jeong, Jonpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • This paper aims to show that cooperative robots, which have only been used in manufacturing sites, are expanding their scope of use in daily living spaces due to the expansion of non-face-to-face services. By combining robots and IoT technologies in terms of diversifying services in daily life and customized service areas, it is expected that the general public will also have easy access to smart technologies, and these technologies will be used in more areas. The robot barista system will provide customers with the services they want, monitoring, maintenance, and management of the system, making this paper convenient for customers, as well as managers who run stores, maintenance and repair, and engineers who design the system. This paper attempts to demonstrate this through a structure called Robopresso.

Performance of AMI-CORBA for Field Robot Application

  • Syahroni Nanang;Choi Jae-Weon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.384-389
    • /
    • 2005
  • The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform (OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system, two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI). The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera Images will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk sizes were compared with the number of clients and message latency, some of the measurement data's are summarized in the following paragraph. In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient fur the message size below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message size bigger than 2Mbytes, the AMI are still able to meet requirement far more than 5 clients simultaneously.

  • PDF

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF