
Performance of AMI-CORBA for Field Robot Application

Nanang Syahroni, Jae Weon Choi
Guidance, Navigation, and Control Laboratory
School of Mechanical Engineering and RIMT

Pusan National University, Busan 609-735, Korea
nsyahroni@yahoo.com, choijw@pusan.ac.kr

ABSTRACT

The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform
(OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which
facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system,
two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while
graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI).
The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera images
will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk
sizes were compared with the number of clients and message latency, some of the measurement data’s are summarized in the
following paragraph.
In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change
according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient for the message size
below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several
destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message
size bigger than 2 Mbytes, the AMI are still able to meet requirement for more than 5 clients simultaneously

Keywords: Field Robot, OCP, CORBA, AMI

1. INTRODUCTION

The hierarchical systems for autonomous Field Robot
(FR) control systems with real-time communication
capability, which are mission control station (MCS) to
draws the mission planning, decision control algorithm,
and maintain coordination of several type of FR have
emerged as a topic of significant interest to controls
community. The small FR type that possible
implementation fitting in rucksack envelope, provides by
navigation system sensors for all weather, daylight and
nigh vision, to performs for scout mission to search,
detect, recognize the mines or targets, and communication
relay1). Another type of FR for squad supporting mission
with limited speed, mobility and heavy, but carrying large
of supplies and equipments for weapon control system.2)

The basic idea behind most of the current FR navigation
system is uses the satellite navigation system to acquire
their locations, combining with the environment
information’s which are collected by their sensors to
provide a representation of the surround environment to
emerges the situation awareness 3). In the autonomous
ground vehicles that use integrated GPS/INS systems,
combining with sensor data to follow prescribed paths and
to sense the environment around them4). One operates in
smooth terrains, and the other is intended for cross-
country operation high-accuracy positioning for path

guidance in the presence of large structures such as
buildings, rocks and trees.5)

In order for a multiple field robots to travel from one
location to another’s, they have to aware the position and
contiguity among them by exchanges the information
using wireless local area network. The distributed dynamic
host configuration protocol for nodes in a Mobile Ad-hoc
Network (MANET) enables nodes to configure the
network parameters of new nodes entering the network.
Specifically to addressing the problem of assigning unique
IP addresses to MANET nodes in the absence of a DHCP
server.6)

The middleware communication among several FR by
exchanges the data or their system performance needs the
rapid response times needed in a distributed network to
support time critical calculation algorithm for joint
missions. A mission base station will use the human level
perceptual processing algorithm to acquire accurate and
timely information to make time critical decision.
Implementing this system, middleware communication
requires state of the art real-time networked
communication to shape and response to emerging
situation rapidly. Remote object invocations to shared
communication channels and publisher/subscriber
communication to real time channels also were considered
in many application.7)

2. HARDWARE SYSTEM

The significant advances in surveillance or reconnaissance
over wide area could be substitute by the improvements of
sensor technologies 8). In the figure 1 is illustrated our FR
use an All Terrain Vehicle (ATV), it consist a IR camera
manipulator, ultrasonic sensors for avoid a collision,
sensor for heat and rotation of engine, steering and break
system sensor, and GPS receiver are connected into PC
interface terminal.

Fig.1 Field Robot System

The design methodology in this research is use the
customize Open Control Platform (OCP) to integrating
control technologies and resource, which is using
Common Object Request Broker Architecture (CORBA)
real-time distributed computer technology to coordinated
distribute data, organize the interaction among
hierarchically components, and to support dynamic
reconfiguration of the components. In this paper we
review the AMI CORBA as tools for supporting the
graphical data exchange among several FR systems.

During this research, the two simulators of FR systems
and one Mission Control System (MCS) are prepared. In
the each FR hardware system, the four CIC DC-Geared
Motor (Model JC-35L/H-12) installed in each FR with a
12-V nominal voltage was used as actuators in lieu of
expensive. The IR Camera mechanical system needs a one
motor driver for 360 degrees horizontal rotations, while
each steering, engine and braking system needs one motor
driver respectively. Each motor is driven by an H-Bridge
power amplifier using 6 amperes complementary silicon
transistor TIP41 and TIP42, were made by Mospec. It can
deliver continuous power of 60W from each transistor
within peak voltage of 100V. Motor drivers are drives
using PC parallel port line with PWM output which
generated by computer program for precise torque control.
During initial testing, this motor drivers ware observed to
produce high temperature in 12V, which can damage the
power transistor as the main electronic components.
Therefore, a resistor with higher resistance was used to
clip the bias current caused by the optocoupler AN25, and
a NAND gate 74LS00 was used to perform as inverting
any PWM output from PC parallel port with the standard
5V digital output.

A four motor drivers are connected to the IEEE 1284
standard parallel port use 25 pin female (DB25) connector
(to which printer is connected). On almost all the PCs only

one parallel port, but we can inserting additional ISA/PCI
parallel port cards. The Status, Data, and Control lines are
connected to there corresponding registers inside the
computer. As a typical PC, the base address of LPT1 is
0x378 (0x278 for LPT2). The Data register resides at this
base address (0x378), Status register at base address + 1 =
0x279 and the Control register is at base address + 2 =
0x27a.

The CPU runs the software that handles all hardware
controls, TAO CORBA-based communication, and the
filters for the IR camera signals. A PC-type Intel Pentium
III-733MHz from Samsung (model M2761) was used as
the FR central processing unit. It has 128MB of main
memory, a 20GB hard disk, two serial ports, and one
parallel port.

Fig.2 FR System Middleware Interconnection

The graphical information come from video device using
the components that were used in the design and testing of
the system were low cost commercial products that are
readily available. An IR camera Asung ACM-7212DNC
IR Led Dome CCD Camera along with a Video Capture
Card was used to capture data for analysis via an USB
interfacing to PC. This allowed the capture of PAL
standard data, formatted for 640x480 captures at a frame
rate of 25 frames per second.

The FR communication modeling and simulation are
developing and ongoing using wire LAN, complement to
MANET. Simulation models of this FR are used, partly to
ensure the performance throughout the development
phase, in order to obtain the results that fully represent
reality the models are constantly validated against the
performed tests.

3. SOFTWARE SYSTEM

Two software applications were developed separately for
both the field robot PCFR computers and the mission
control system PCMCS of the overall system experiment,
the PCFR runs the application for the decision control
system and trajectories algorithm, while the PCMCS run the
mission planning algorithm and performance analyze.

The software applications are designing by customizes
Open Control Platform (OCP) middleware structure as

shown in figure bellow. The OCP has its heritage in the
CORBA-based and designed to support all levels of
control development for Unmanned Aerial Vehicle (UAV)
in Boeing. The major components of the OCP software
include run-time framework and middleware, simulation
environment, and tool integration. One goal of OCP is to
bring middleware enabled software development to
universal vehicle management-type processing.

Fig. 3 OCP Development Process

The OCP software infrastructure development as shows in
the figure 3, for the PCFR is focused on trajectories, control
algorithms, and reconfiguration system, then PCMCS latter
is used to send start/stop commands for health monitoring
and mission strategies, for post experiment is for data
analysis and plotting. A remote PCFR1, PCFR2, and base
station PCMCS computer communicate via LAN with
standard Ethernet 10Mb of bandwidth.

4. MIDDLEWARE STRUCTURE

Middleware is software that provides a substrate through
which software components can communicate with each
other. It sits between the operating system and the
application software and transparently handles low-level
details generally required for data transfer between
applications and over the network. Middleware can be
used when the application software is located on the local
processor or on a distributed computing system linking
many processors across a network. A CORBA is a
middleware software standard developed by a consortium
called the Object Management Group (OMG). A basic
feature of CORBA is the object request broker (ORB),
which handles remote method calls.9)

Fig.4 CORBA Distributed Communication.

As depicted in the figure 4, when an object calls a method
of another object distributed elsewhere on the network, the
ORB intercepts the call and directs it. The client object
does not need to know the location of the remote server
object, a principle known as location transparency that
greatly simplifies the programming of distributed
applications. The way this works is that a programmer
specifies an interface for each object using a standard
interface definition language (IDL). These interfaces are
compiled into what are referred to as client IDL stubs,
which act as proxies for the actual objects, and server
object IDL skeletons. All components are registered with
and interact through the ORB. When a client object
invokes a method it does so as if it is making a method
call to a local object, but it is actually invoking it on a
proxy that is the IDL stub. The method call goes through
the ORB, which locates the server object. If the server
object is remote, the ORB needs to send the request to the
remote object’s ORB over the network. This involves
marshalling the parameters, which means translating data
values from their local representations to a common
network protocol format, such as the Internet Inter-ORB
Protocol (IIOP) standard defined by OMG.10)

On the server object side, the parameters are de-marshaled
and the method invocation is passed to the IDL skeleton,
which invokes the method on the actual server object. The
server returns the requested value in a similar fashion
through the ORB. Note that the client does not have to be
aware of where the server object is located, its
programming language, its operating system, or any other
system aspects that are not part of an object’s interface.

The OCP provides an open, middleware-enabled software
framework and development platform for controls
technology. The customize OCP middleware applications
are written in C++. It includes a real-time CORBA
component which leverages the ACE and TA0 products
developed by the Distributed Object Computing (DOC)
research team at Washington University.11) TA0 provides
some real-time performance extensions to CORBA. The
Asynchronous Method Invocation (AMI) is one of the
invocation methods in the Common Object Request
Broker Architecture (CORBA) using Internet Inter-ORB
Protocol (IIOP) to perform data objects exchange in the
client/server application hierarchy 12). The AMI client
application uses this service by sending the command to
download the preferred graphical information for further
processing. The AMI server response by sending several
chunks of a message by iteration transfer simultaneously.
The number of chunk is generated automatically according
the amount in conjunction with AMI without requiring
multiple threads. The basic design of the AMI programs is
to allow both the client and the server is to other tasks
without having to wait for a given task to complete.

In this experiment, the CORBA Naming Service will use
to bind and resolve and object reference dynamically,
rather than using an Interoperable Object Reference (IOR)
static file. Operations in the Interface Definition Language
(IDL) will use exceptions to propagate problems back to

the clients. In this chapter illustrates how to implement a
simple client and server using CORBA, IIOP, and AMI.
Client applications can use this service to download and
display files from a CORBA server on the network13).

Fig.5 IDL for AMI experiment

The IDL structure for the experiment is shown in the
figure 5. The client first activates its callback object, and
then asynchronously registers a reference to its callback
object with the server's iterate generator. The iterate
generator then creates an AMI reply callback handler for
the requested file that asynchronously sends chunks of
data to the client's callback object. After creating and
running the callback handler, the iterate generator returns
the metadata containing the content type and modification
date of the file to client.

Since the callback was registered the iterate generator
using AMI, an AMI reply handler called iterate handler on
the client side will receive and handle the metadata
returned from the iterate generator. The iterate handler
then passes the received metadata to the callback object.
The callback will spawn an external viewer once both the
metadata and the entire file content have been received.
The callback object is designed to correctly handle the
case where the content is received before the metadata,
and vice versa. The core functionality as depicted in the
figure 6 below:

Fig.6 AMI Chunk Iterator

Client applications will use an iterator in conjunction with
AMI to download and display files from multiple CORBA
server one chunk at a time simultaneously, without
requiring multiple threads. This design will help improve
the memory management overhead on the client and
server. In the server side it reads the name of the pathname
the data want to download. It then initializes the client-
side ORB and uses resolve initial reference to obtain a
reference to a naming service. This object reference is then
downcast via narrow function to an object reference for a
naming context interface, which is then used to resolve the
object reference that the server bound earlier. After

narrowing this to the Server interface, the get iterate
operation is called via the object reference to obtain the
chunk iterator, which is used to download the file. The
client invokes the send next chunk method on the iterator,
passing in the offset and the object reference to the client's
reply handler. To relax this constraint would require some
type of offset parameter to the next chunk callback to
perform reassembly if chunks for the same file arrived out
of order.

When next chunk returns a chunk of the file, the contents
are written into a temporary file created in on the local
host. Then, an external viewer is spawned to display the
file. The type of viewer to spawn is determined by
examining the content type metadata returned by the
server. The call back functionality of this program is as
depicted in figure 7 below:

Fig.7 AMI Call Back Functionality

The figure 8 below is shows the monitor console of the
AMI server in this experiment. The 4 different clients
download the information from AMI server in standard
chunk size of 512 bytes and every chunks have its a
sequence number.

Fig.8 CORBA AMI Console

5. EXPERIMENTAL RESULT

In conducting the experiments began with a single FR
machine measurement of each of its system performance,
sensors properties, and than moved to multiple FR
machines connected with a CORBA network. With these
experiments we have a various results, methods, and
performances which are obtained on different
classification. However only the most interesting subsets
which are related to AMI are reported as shown in
following figures, most of them are documented for the

message latency and throughput of the network that
effected by data sizes and number of clients.

Fig.9 AMI Average Speed vs Message Size

The first result shown in figure 9 is a comparison of the
performance or speed of standard 10Mb Ethernet network.
On average, the time needed to send a message of the
specified size through the CORBA using Ethernet
transaction took approximately 1000 kb/sec for the
message above 50kbytes. The 512 bytes buffer size was
chosen for system compatibility reason; however the
message latency in small size of message is not efficient.

Fig.10 AMI Maximum Throughput vs Message Size

In the figure 10, the TCP throughput of the CORBA for
the standard Ethernet network is nearly achieved their
maximum theoretical throughput at 8 Mb/sec, or 80% of
theoretical maximum speed of Ethernet. Because the CPU
of the FR machine has enough speed to process any data
transfer, and buffer size is also small size.

Fig.11 AMI Message Latency vs Variable Chunk Sizes

In the figure 11, since the AMI buffers size were change,
the message latency is significantly change according to it
frame size. The smaller frame size between 256 bytes to
512 bytes is more efficient for the message size below
2Mbytes, but it average performance in the large of
message size a bigger frame size is more efficient.

For the several destination, the same experiment using 512
bytes frame with 2 to 5 destinations are shown in figure
12. For the message size bigger than 2 Mbytes, the AMI
are still able to meet requirement for more than 5 clients
simultaneously, but the major revelation had not been
discovered in this experiment, especially to uncover the
effective programming parameters and number of clients
that will be affected to the overall AMI performance
significantly. This research program is an ongoing project
in GN&C Laboratory while AMI is consider to send the
large graphical information and CORBA event channel is
consider distributing the navigation information over the
network.

Fig.12 AMI Message Latency vs Number of Clients

6. CONCLUSIONS AND FUTURE WORKS

A number of additional experiments and measurements
could be conducted to further research in this area. First,
the QoS features of the wireless network could be used to
help providing additional assurances for timely delivery
for distributing the navigation messages, scanned images,
and real-time video information with variable chunk sizes.
Second, by increasing the number of the destination than
the network is heavily loaded could be performed to
determine how the data routing distribution performs in
the face of varying network congestion. And also AMI can
help improving the scalability of CORBA applications by
tuning the chunk size and minimizing the number of client
threads required to perform two-way invocations.

In previous section, we present empirical results that show
how AMI implementation helps to increase application
scalability to distribute the large graphical information,
and we demonstrate the efficiency of the AMI
implementation distinctly, by comparing message latency
and throughput of AMI. However the major revelation had
not been discovered in these experiment steps, especially
to uncover the effective CORBA programming parameters

according to the network parameters that will be affected
to the overall AMI performance significantly.

ACKNOWLEDGEMENT

This work was supported by Grant
No.(R0120030001043002004) from the Basic Research
Program of the Korean Science & Engineering
Foundation.

REFERENCES

[1]. Cang Ye, and Borenstein, J., A method for mobile

robot navigation on rough terrain, Proceeding ICRA
'04. Vol. 4 , April 26-May 1, 2004, p:3863- 3869.

[2]. Fregene, K., Madhavan, R., and Kennedy, D.,
Coordinated control of multiple terrain mapping
UGVs, Preceeding ICRA '04, Vol. 4, p:4210 – 4215.

[3]. Anthony Stentz and Martial Hebert, A Complete
Navigation System for Goal Acquisition in Unknown
Environments, Autonomous Robots, Volume 2,
Number 2, August 1995.

[4]. S. A. Roth and S. Singh, Application of robust, high-
accuracy positioning for autonomous ground
vehicles, AUVSI Unmanned Systems North America
2004, August, 2004.

[5]. Golda, D.,a Iagnenima, K., and Dubowsky, S.,
Probabilistic modeling and analysis of high-speed
rough-terrain mobile robots, Proceeding ICRA '04.
Volume: 1 , April 26-May 1, 2004, Pages:914 – 919.

[6]. Sanket Nesargi, Ravi Prakash, MANET:
Configuration of Hosts in a Mobile Ad Hoc Network,
Proceedings of INFOCOM 2002.

[7]. M. Mock and E. Nett , On the coordination of
Autonomous Systems, 5th IEEE International
Workshop on Object-Oriented Real-Time
Dependable Systems, Monterey, 1999.

[8]. Insop S., Karray F., Guedea, F., A Distributed real-
time system framework design for multi-robot
cooperative systems using real-time Corba, IEEE
International Symposium on Intelligent Control.
2003, Pages:793 – 798.

[9]. T. Samad and G. Balas, Software-Enabled Control:
Information Technology for Dynamical Systems.
John Wiley & Sons/IEEE Press, 2003.

[10]. Object Management Group, CORBA Messaging
Specification, OMG Document 98-05-05, May 1998.

[11]. D. C. Schmidt, and S. Vinovski, Programming Asyn-
chronous Method Invocations with CORBA
Messaging, C++ Report, SIGS, Vol. 11, Feb. 1999.

[12]. Mayur Deshpande, Douglas C. Schmidt, Carlos
O'Ryan, and Darrell Brunsch, The Design and
Performance of Asynchronous Method Handling for
CORBA, Proceedings of the Distributed Objects and
Applications (DOA) conference, Irvine, Nov. 2002.

[13]. Alexander B. Arulanthu, Carlos O'Ryan, Douglas C.
Schmidt, Michael Kircher, and Jeff Parsons, The
Design and Performance of a Scalable ORB
Architecture for CORBA Asynchronous Messaging,
Proceedings of the IFIP/ACM Middleware 2000
Conference, New York, April 3-7, 2000.

	Text6: 384
	Text7: 385
	Text8: 386
	Text9: 387
	Text10: 388
	Text11: 389

