• Title/Summary/Keyword: Cooperative Network

Search Result 765, Processing Time 0.029 seconds

A Full Rate Dual Relay Cooperative Approach for Wireless Systems

  • Hassan, Syed Ali;Li, Geoffrey Ye;Wang, Peter Shu Shaw;Green, Marilynn Wylie
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.442-448
    • /
    • 2010
  • Cooperative relaying methods have attracted a lot of interest in the past few years. A conventional cooperative relaying scheme has a source, a destination, and a single relay. This cooperative scheme can support one symbol transmission per time slot, and is caned full rate transmission. However, existing fun rate cooperative relay approaches provide asymmetrical gain for different transmitted symbols. In this paper, we propose a cooperative relaying scheme that is assisted with dual relays and provides full transmission rate with the same macro-diversity to each symbol. We also address equalization for the dual relay transmission system in addition to addressing the issues concerning the improvement of system performance in terms of optimal power allocations.

Power-limited Cooperative Diversity with Selection Combining in Rayleigh Fading for Wireless Ad-hoc Networks (레일레이 페이딩하에서 무선 ad-hoc 네트워크를 위한 전력제한된 선택결합 협동다이버시티)

  • Kim Nam-Soo;Lee Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.769-774
    • /
    • 2006
  • Based on the performance of a cooperative diversity with selection combining in Rayleigh fading, the power control range of a relay node is investigated. Also the effect of the power-limited relay node to the system performance is investigated. If the average signal-to-noise ratio(SNR) of each signal path is equal, the single relay cooperative diversity is obtained 13.5dB gain at the outage probability of $1{\times}10^{-3}$ in Rayleigh fading. We noticed that the limited power of a relay node severely degrades the system performance. Therefore the node with limited power in ad-hoc network is not recommended as a relay node in cooperative diversity system.

Attack-Proof Cooperative Spectrum Sensing Based on Consensus Algorithm in Cognitive Radio Networks

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1042-1062
    • /
    • 2010
  • Cooperative spectrum sensing (CSS) is an effective technology for alleviating the unreliability of local spectrum sensing due to fading/shadowing effects. Unlike most existing solutions, this paper considers the use of CSS technology in decentralized networks where a fusion center is not available. In such a decentralized network, some attackers may sneak into the ranks of cooperative users. On the basis of recent advances in bio-inspired consensus algorithms, an attack-proof, decentralized CSS scheme is proposed in which all secondary users can maintain cooperative sensing by exchanging information locally instead of requiring centralized control or data fusion. Users no longer need any prior knowledge of the network. To counter three potential categories of spectrum sensing data falsification (SSDF) attacks, some anti-attack strategies are applied to the iterative process of information exchange. This enables most authentic users to exclude potentially malicious users from their neighborhood. As represented by simulation results, the proposed scheme can generally ensure that most authentic users reach a consensus within the given number of iterations, and it also demonstrates much better robustness against different SSDF attacks than several existing schemes.

Tradeoff between Energy-Efficiency and Spectral-Efficiency by Cooperative Rate Splitting

  • Yang, Chungang;Yue, Jian;Sheng, Min;Li, Jiandong
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The trend of an increasing demand for a high-quality user experience, coupled with a shortage of radio resources, has necessitated more advanced wireless techniques to cooperatively achieve the required quality-of-experience enhancement. In this study, we investigate the critical problem of rate splitting in heterogeneous cellular networks, where concurrent transmission, for instance, the coordinated multipoint transmission and reception of LTE-A systems, shows promise for improvement of network-wide capacity and the user experience. Unlike most current studies, which only deal with spectral efficiency enhancement, we implement an optimal rate splitting strategy to improve both spectral efficiency and energy efficiency by exploring and exploiting cooperation diversity. First, we introduce the motivation for our proposed algorithm, and then employ the typical cooperative bargaining game to formulate the problem. Next, we derive the best response function by analyzing the dual problem of the defined primal problem. The existence and uniqueness of the proposed cooperative bargaining equilibrium are proved, and more importantly, a distributed algorithm is designed to approach the optimal unique solution under mild conditions. Finally, numerical results show a performance improvement for our proposed distributed cooperative rate splitting algorithm.

MIMO Two-way Cooperative Relay to Improve End to End Capacity in Non-equidistant Topology

  • Niyizamwiyitira, Christine;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.465-467
    • /
    • 2010
  • This paper proposes MIMO two-way cooperative relay scheme to optimize the end to end capacity in wireless multi-hop mesh network. The basic idea is to perform data transmission via multi-hop relay nodes, in equidistant topology, this method is quite efficient. However, on one hand this topology is very rare in practical situation, on the other hand, in real practical situation where the topology is most likely non equidistant, the end to end capacity significantly degrades due to bottleneck link caused by uneven SNR. Moreover, the end to end capacity degrades at high SNR due to overreach interference from far nodes existing in multi-hop relay networks. In this paper, MIMO two-way cooperative relay in the region of non equidistant nodes is found efficient to improve the end to end capacity. The proposed scheme is validated using numerical simulation.

  • PDF

Adaptive Power Allocation in Cooperative Relay Networks

  • Gao, Xiang;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.795-798
    • /
    • 2007
  • In this paper, we proposed a simple power allocation scheme to maximize network lifetime. To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at destination node. In this paper, we calculate power allocation in "amplify and forward" (AF) model. We evaluated the proposed power allocation scheme using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal power allocation.

  • PDF

A Study on the Construction of a Cooperative Network for Public Libraries (공공도서관 협력 네트워크 구축 방안)

  • Cho, Yoon-Hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.44 no.2
    • /
    • pp.177-197
    • /
    • 2010
  • Public libraries in Korea have increased dramatically in number through the last 45 years.However, compared to the public libraries of the United States of America, United Kingdom of Britain, and Japan, public libraries in Korea tended to have a higher rate of capita visits per a public library, so public libraries' infrastructure in Korea is very inadequate. This research analyzed cooperative network cases for public libraries of London Borough of Camden, Ootaku in Janpan, and Bucheon City in Korea to deduct a plan to broaden the service area and to make management more efficient by managing based on the single-administrative district area as a regional library system. With these results this research excogitated a cooperative network model and a plan to make the management more efficient. As a conclusion, as public libraries increase in numbers we need to examine the proper scale, and we need to construct a central-concentrated system to enhance management efficiency between a central library and branch lib aries or small libraries.

Performance Analysis of Cooperative Network Error Correcting Scheme Using Distributed Turbo Code and Power Allocation (양방향 중계 채널에서 네트워크 코딩을 이용한 분산 터보 부호 기법과 전력 할당의 성능 분석)

  • Lim, Jin-Soo;Ok, Jun-Ho;Yoo, Chul-Hae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.57-64
    • /
    • 2011
  • A two-way relay channel is a bidirectional cooperative communication channel between two nodes using a relay. In many cooperative communication schemes, a relay transmits its data to each node using separate channels. However, in the two-way relay channel, a relay can broadcast the network-coded signal to both nodes in a same time slot, which can increase the system throughput. In this paper, a new cooperative network error correcting scheme using distributed turbo code in a two-way relay channel is proposed. The proposed scheme not only increases the system throughput using network code but also improves the performance by utilizing the LLR information from relay node and other user node through distributed turbo code. Also, a power allocation scheme is investigated for various channel conditions to improve the system performance.

Device-to-Device Relay Cooperative Transmission Based on Network Coding

  • Wang, Jing;Ouyang, Mingsheng;Liang, Wei;Hou, Jun;Liu, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3431-3445
    • /
    • 2017
  • Due to the advantages of low transmit power consumption, high spectral efficiency and extended system coverage, Device-to-Device (D2D) communication has drawn explosive attention in wireless communication field. Considering that intra-cell interference caused between cellular signals and D2D signals, in this paper, a network coding-based D2D relay cooperative transmission algorithm is proposed. Under D2D single-hop relay transmission mode, cellular interfering signals can be regarded as useful signals to code with D2D signals at D2D relay node. Using cellular interfering signals and network coded signals, D2D receiver restores the D2D signals to achieve the effect of interference suppression. Theoretical analysis shows that, compared with Amplify-and-forward (AF) mode and Decode-and-forward (DF) mode, the proposed algorithm can dramatically increase the link achievable rate. Furthermore, simulation experiment verifies that by employing the proposed algorithm, the interference signals in D2D communication can be eliminated effectively, and meanwhile the symbol error rate (SER) performance can be improved.

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.