• Title/Summary/Keyword: Cooling stop

Search Result 27, Processing Time 0.021 seconds

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

Study on the energy-saving constant temperature and humidity machine operating characteristics (에너지 절감형 항온항습기 운전 특성에 관한 연구)

  • Cha, Insu;Ha, Minho;Jung, Gyeonghwan
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2016
  • The heat recovery system that was applied in this study, is the energy-saving type that can produce the maximum cooling capacity less power in use. In order to have a more precise control function the temperature and humidity of the constant temperature and humidity machine, control algorithm is applied to designed a fuzzy PID controller, and the outside air compensation device (air-cooled) demonstrated excellent ability to dehumidify the moisture, $-20^{\circ}C$ in winter. High efficiency and the low-noise type sirocco fan operate quitely and designed to fit the bottom-up and top-down in accordance with the characteristics of equipment. as a result of experiment data, the conversion efficiency is 95% or more, power recovery time is within 5sec, stop delay time is within 30sec, pump down time is 10sec, pump delay time is 5sec, heating delay time is 5sec, temperature deviation is ${\pm}2^{\circ}C$ (cooling deviation: $2^{\circ}C$, Heating deviation : $2^{\circ}C$), humidity deviation is a ${\pm}5%$ (humidification deviation 3.0%, dehumidification deviation 3.0%). Recently, ubiquitous technology is important. so, the constant temperature and humidity machine designed to be able to remotely control to via the mobile phone, and more scalable to support MMI software and automatic interface. Further, the life of the parts and equipment is extended by the failure.

Feasibility Study of Cold Storage System to Maintaining Cooling Performance for ISG Vehicle (공회전 제한장치 차량에서 냉방 성능 유지를 위한 축냉 시스템 적용에 대한 연구)

  • Lee, Daewoong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • This study explores the feasibility of a cold storage system to provide thermal comfort for idle stop and go (ISG) vehicles. ISG function is the most valuable and environmental friendly technology in the current automobile industry. However, when an ISG vehicle stops, meaning when the engine standstill, the air-conditioning system does not work, because the compressor also stops. Therefore, passenger thermal comfort is not maintained, as cold air is not provided in the cabin. Consequently, many automakers have studied electric air-conditioning systems based on electrically-driven compressors or cold storage systems using phase-change materials. The experiments herein were conducted for the feasibility testing of different types of cold storage heat-exchangers, cold storage mediums, and thermo-expansion valves with current air-conditioners. The auxiliary cold storage system, filled with phase-change materials, was located behind the evaporator and almost stacked on top of it. In the experimental results, the air discharge temperature rate of increase was better than the conventional air-conditioning system when the compressor stopped and thermal comfort was maintained with $1.9{\sim}4.3^{\circ}C$ decreases within 60 seconds. The #1 cold storage heat-exchanger (CSH), #2 thermo-expansion valve (TXV) and #2 phase change material (PCM) were chosen because of the best temperature rise delay. It was concluded that a cold storage system is an effective solution for ISG vehicles to maintain thermal comfort during short engine stops.

Study on an Evaluation of Remote Control Torch Performance to reduce CO2 Welding Defects (CO2 용접결함 감소를 위한 원격 제어 토치 성능 평가 연구)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6282-6288
    • /
    • 2014
  • $CO_2$ welding is used widely in the field. On the other hand, welding defects occur when welders cannot adjust the current and voltage needed for welding and have to stop working to adjust the current and voltage, causing sudden cooling down of the welding structure inside a vehicle or tank where the control panel is invisible or when work site is far. This study used three types of existing $CO_2$ welders. This also applied SS400 rolled steel for welding structural purposes for remote control torch welding, perform a welding test through v-groove butt welding with a remote control torch and existing $CO_2$ welding torch, conducted visual inspection on the appearance of a welded top bead. In addition, the appearance quality of the welding part was monitored mainly through penetrant testing and a bending test to evaluate the welding defect reduction and the effect on the performance and compatibility by replacing the existing welder.

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.

Experimental Performance Evaluation on V-shaped Butt Welding Using GMA Welding Double Wire Reel and Remote Control Torch Welding Technique (GMAW 더블 와이어 릴, 원격제어토치 용접기술을 이용한 V형 맞대기 용접 부의 실험적 성능 평가)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1339-1347
    • /
    • 2015
  • This study discusses a remote control torch system equipped with a GMAW double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel, such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is burned out completely. Such work suspension resulting from frequent moves to adjust the current and voltage as well as to replace the wire and subsequent cooling causes welding defects. This study produced a remote control torch equipped with a double wire reel by simplifying and streamlining the existing GMAW functions to reduce the troubling issue. The remote control torch equipped with a double wire reel and the existing $CO_2$ /MAG welding torch were applied as a V-groove butt in the vertical position using 6mm rolled steel for a SM50A welding structure. After welding, the condition of welded surface beads underwent a visual inspection and radiographic inspection to analyze the welding quality inside the welded part. This study also evaluated the reduction of welding defects, cost saving, the replacing performance against the existing commercial welders, and the effects on possible compatibility.

Thermal history of the Jecheon granite pluton in the Ogcheon Fold Belt, South Korea (남한의 옥천습곡대에 분포되어 있는 제천화강암체의 열역사)

  • Jin Myung-Shik;Kim Seong-Jae;Shin Seong-Cheon;Choo Seung-Hwan;Chi Se-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 1992
  • Whole rock and mineral ages for the Jecheon Granite distributed in the Ogcheon Fold Belt were dated by three radiometric methods, and its thermal history was elucidated as follows, on the basis of isotopic age data. Rb and Sr isotopic compositions of three whole rock and seven mineral concentrates made an isochron of 202.7${\pm}$ 1.9 Ma with a strontium initial ratio of 0.7140. Different age data of twelve mineral concentrates agree closely with the retention temperature of each mineral in K-Ar and Fission Track methods. The Jecheon granitic magma was generated by partial melting of crustal materials (S-type), or by mixins between mantle and crustal materials, intruded into the katazone or mesozone (7∼9 km) of the Ogcheon Fold Belt, at least in the Early Jurassic (about 203 Ma), and then crystallized and cooled down rapidly from about 600$^{\circ}C$ to 300$^{\circ}C$ (more than 20$^{\circ}C$/Ma), owing to thermal differences between the magma and the wall-rock. During the Middle to Late Jurassic (190∼140 Ma), the cooling of the granite was likely to stop and keep thermal equilibrium with the wall-rock. The severe tectonism associated with igneous activities and active weathering on the surface in Early to Late Cretaceous time (140∼70 Ma) might have accelerated the granite pluton to uplift rapidly (40∼60 m/Ma in average) up to 3∼4 km and cooled down from 300$^{\circ}C$ to 200$^{\circ}C$ (1.4 $^{\circ}C$/Ma). The granite pluton was likely to keep different uplifting and cooling rate of about 120 m/Ma and 5$^{\circ}C$/Ma in average from the Late Cretaceous to Early Tertiary (70∼50 Ma), and about 60 m/Ma and 2$^{\circ}C$/Ma in average from about 50 Ma up to the present, respectively.

  • PDF