• 제목/요약/키워드: Cooling rate coefficient

검색결과 175건 처리시간 0.026초

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental study on heat transfer of a falling liquid film in air channel flow)

  • 오동은;강병하;김석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow)

  • 오동은;강병하;김석현;이대영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구 (An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

소형 건축 벽면의 냉수 패널에 의한 냉방시스템에 관한 연구 (A Study on Cooling Systems with Cold Water Panels in the Walls of Small Buildings)

  • 조동현;조명기
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.20-26
    • /
    • 2019
  • This study was conducted on cooling systems in which, for the first time at home and abroad, cold water panels are embedded in the walls of small buildings for radiant cooling by heat absorption with cold water. In summer, cold water is circulated through cold water (chiller) circulation tubes embedded in three walls (two side walls and one rear wall) of a building to implement radiant cooling by the coldness of the water. From the results of this study, the experimental and theoretical natural convection heat transfer coefficients were relatively well-matched over the entire experimental range, thereby verifying the reliability of the experimental results. The surface temperature reduction rate of the walls in which cold water panels are embedded was large whereas that of the walls where no cold water panels are embedded was very small.

노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구 (The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer)

  • 이진원;강영규;백병준;박복춘
    • 열처리공학회지
    • /
    • 제5권3호
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 - (Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • 제24권6호
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF

FAPO 제올라이트 흡착제 코팅을 통한 핀-관 열교환기 운전조건별 열전달 성능특성 (Heat Transfer Characteristics of Fin-Tube Heat Exchanger Coated with FAPO Zeolite Adsorbent at Different Operating Conditions)

  • 정철기;김용찬;배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.93-101
    • /
    • 2017
  • In conventional adsorption chamber, adsorbent is embedded in between heat exchanger fins by wire mesh. This method impedes heat and mass transfer efficiency. So in this study, to improve the heat transfer performance of heat exchanger, a fin-tube exchanger was coated with FAPO (Ferroaluminophosphate) zeolite adsorbent. The fin-tube heat exchanger has a fin pitch of 1.8 mm with a variation of adsorbent coating thickness of about 0.1 mm, 0.15 mm and 0.2 mm. By varying cooling water temperature and chilled water temperature respecively, heat transfer rate and overall heat transfer coefficient were investigated. As a result, the heat transfer rate and overall heat transfer coefficient increase with decreasing cooling water temperature and increasing chilled water temperature. Under the basic conditions, the heat transfer rate of heat exchanger with 0.2 mm coating thickness is 11% and 43% higher than that of 0.1 mm and 0.15 mm, respectively. The overall heat transfer coefficient is $189.1W/m^2{\cdot}^{\circ}C$, it is two times lager than that of 0.1 mm.

수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube)

  • 최이철;강병하;김석현
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

전자냉동 김치독의 열유동 및 성능 특성 (Heat Flow and Cooling Performance of an Electronic Refrigerating Kimchi Jar)

  • 송규석;김경환;이승철;고철균;이재헌;오명도
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.928-936
    • /
    • 1999
  • The electronic refrigerating kimchi jar operates with a low noise because it contains no compressor but it consumes more energy than that of an refrigerator with compressor. In this paper, the heat flow characteristics and cooling performance of an electronic refrigerating kimchi jar are studied by means of experiments. When the storage temperature is kept in a range of $-5.7^{\circ}C$ to $4.1^{\circ}C$. in the case of three ambient temperatures; $12.7^{\circ}C$, $22.3^{\circ}C$ and $32.2^{\circ}C$, the cooling performance of $20{\ell}$ kimchi jar is investigated. The experiments show that the temperature difference that exists between kimchi jar and its ambient provides a measure of the coefficient of performance of kimchi jar. It is also found that ratio of net pumping heat to the heat pumping rate of thermoelectric module is independent of the temperature difference.

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.