• Title/Summary/Keyword: Cooling liner

Search Result 37, Processing Time 0.03 seconds

GC/MS Analysis of Ethylene Glycol in the Contaminated Lubricant Oil Through Solvent Extraction Followed by Derivatization using Bistrimethylsilyltrifluoroacetamide (BSTFA) (엔진윤활유 중 Ethylene Glycol의 용제추출후 bistrimethylsilyltrifluoroacetamide(BSTFA)를 이용한 GC/MS 분석에 관한 연구)

  • Lee, Joon-Bae;Kwon, O-Seong;You, Jae-Hoon;Shon, Shungkun;Sung, Tae-Myung;Paeng, Ki-Jung
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.315-320
    • /
    • 2012
  • For proper functioning, general machines usually need lubricant oil as a cooling, cleaning, and sealing agent at points of mechanical contact. The quality of lubricant oil can deteriorate during operation owing to various causes such as high temperature, combustion products and extraneous impurities. In this study, a heavy load stopped during operation, and the oil was analyzed to check whether any impurities were added. Extraction using acetonitrile followed by reaction with BSTFA(bistrimethylsilyl trifluoroacetamide) showed that, trimethylsilylated ethylene glycol was present in the lubricant oil. To quantify the ethylene glycol in the oil, deuterium-substituted ethylene glycol, which acted as an internal standard, was added to the sample and then extracted with the solvent. Next, the extract was reacted with the derivatizing agent(BSTFA) and then analyzed with GC/MS. The detection limit of this method was found to be $0.5{\mu}g/g$ and the recovery of oil containing $20,000{\mu}g/g$ of ethylene glycol was measured to be 94.8%. A damaged O-ring and eroded cylinder liner were found during the overhaul, which implied the leakage of coolant containing ethylene glycol into the lubricating system. The erosion of the cylinder liner was assumed to be due to cavitation of the coolant in the cooling system.

Shape Design of the 3-Way Valve used in Marine Diesel Engines (LDCL JWCS) by CFD Analysis (유동해석을 통한 선박용 디젤엔진(LDCL JWCS)의 3-Way Valve 형상 설계)

  • Hwang, Gi Ung;Kwak, Hyo Seo;Kim, Jae Yeol;Eom, Tae Jin;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1077-1084
    • /
    • 2017
  • Camshaft engines designed for constant engine loads have been applied to existing marine diesel engines. However, due to environmental regulations, electro-hydraulic servo mechanisms, which have a loaddependent cylinder liner jacket water cooling system (LDCL-JWCS), have been recently developed to individually control the temperature of the cylinders depending on the engine load. In this system, the 3-way valve, which prevents low temperature corrosion by reducing the temperature difference between the upper and lower parts of the cylinder, has been employed, but the outlet mass flow of the existing valve is low. In this study, the design of the internal shape of the 3-way valve was performed by analyzing the effects of the design parameters of the valve shape on the performance (i.e., the outlet mass flow rate and temperature). The proposed model was verified by comparing its performance to that of existing marine diesel engine valves.

Technology Research on Gas Turbine Combustor Utilizing Melt-Growth Composite Ceramics

  • Konoshita, Yasuhiro;Hagari, Tomoko;Matsumotoi, Kiyoshi;Ogata, Hideki;Ishida, Katsuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.854-860
    • /
    • 2004
  • "Research and Development of Melt-Growth Composite (MGC) Ultra High Efficiency Gas Turbine System Technology" program has been started in JFY2001. The main objective of the program is to establish basic component technologies to apply MGC material to an efficient gas turbine system successfully. It is known that MGC material maintains its mechanical strength at room temperature up to about 2000 K, which is ideal for the high temperature gas turbine. The purposes of the present study are to develop the cooling structure of the gas turbine combustor liner where MGC material is applied as the heat shield panel, also to develop the low NOx combustion system for a 1970 K (1700 deg.C) class gas turbine combustor. To start with, basic heat transfer characteristics were investigated by one-dimensional calculation and heat transfer experiment for the cooling structure. Axially staged configuration and fuel preparation were investigated by CFD calculation and experiments for the low NOx combustor.

  • PDF

MICROSTRUCTURAL EVOLUTION OF SHAPEO-CHARGE LINER AND TARGET MATEREALS DURING BALLISTIC TEST (관통 시험된 성형장약탄 라이너와 타겟 재료에 있어서의 미세조직 변화)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Baek, Un-Hyueong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.46-46
    • /
    • 2001
  • The microstructure of the 1020 mild steel target in the region ahead of craters, made by colliding against Cu and W-Cu shaped-charge jets. has been investigated in the present work. The region ahead of the crater impacted by the Cu shaped-charge jet reveals grain refinement implying the formation of sub-grains, while that of W-Cu one leads to martensitic transformation indicating that the region was heated up to an austenitic region which was followed by rapid cooling. The pressure of W-Cu shaped-charge jet impacting against the target when calculated is higher than that of Cu one. The microhardness of the region ahead of the crater impacted by the W-Cu shaped-charge jet is also higher than that of the Cu one. The microstructure of W-Cu slug that remains inside of the crater depicts the occurrence of the remarkable elongation of W particles during the liner collapse. The microstructural evolution of the region ahead of the crater is discussed on the basis of the pressure dependency of the ferrite/austenite transformation in the steel.

  • PDF

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.4 s.31
    • /
    • pp.39-47
    • /
    • 2005
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from the case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to the case without fins. As the blowing ratio increases, the effect of rectangular fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins. However, the increase of blockage effect gives more pressure loss in the channel.

Heat/Mass Transfer Characteristics in Impingement/Effusion Cooling System with Rectangular Fins for Combustor Liner Cooling (가스터빈 연소실 냉각을 위한 충돌제트/유출냉각기법에서 사각핀 설치에 따른 열/물질전달 특성)

  • Hong, Sung Kook;Rhee, Dong-Ho;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.289-296
    • /
    • 2004
  • The present study has been performed to investigate the influences of rectangular fins on heat transfer in an impingement/effusion cooling system with crossflow. To simulate the impingement/effusion cooling system with initial crossflow, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter. The crossflow passes between the plates, and various rectangular fins are installed on the plates. Reynolds number based on the hole diameter is fixed to 10,000 and the flow rate of crossflow is changed from 0.5 to 1.5 times of that of the impinging jet. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. Also to analyze the flow characteristics, a numerical calculation is performed. When rectangular fins are installed, the flow and heat transfer pattern is changed greatly from case without fins. In the injection hole region, the jet impinges on effusion plate without deflection and wall jet spreads symmetrically. In the effusion region, the crossflow accelerates due to the decrease of cross-sectional area in the channel. Local heat/mass transfer coefficients are enhanced significantly compared to case without fins. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and then the higher average heat/mass transfer coefficients are obtained than the case without fins.

  • PDF

Cleaning Effects of Environmental-Friendly Washing Detergent on Milking Installation in Dairy Farms (젖소농가의 착유시설에 따른 친환경세제의 세척에 미치는 영향)

  • Kim, Chang-Hyun;Park, Joong-Kook
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.346-353
    • /
    • 2010
  • This study was conducted to determine cleaning effects of environmental-friendly washing detergent on milking installation in dairy farms. Milking machine, cooling machine and milking liner were washed by alkaline detergent and acid detergent for first three weeks and alkaline detergent and environmental~friendly detergent for next three weeks and the results get through microorganism and physico-chemistry analysis at the five district dairy farms different from environment. E-coli, coliform, fecal coliform, staphylococcus aureus, fecal streptococcus, prsudomonas aeruginosa and yersinia were not found in all of the dairy farms, and total colony counts were no difference compared with chemical detergent. The water for washing exceeded the determining acceptable level of nitrate nitrogen in the Anseong, Onyang and Cheonan and the remaining substance of washed water was also high levels. The cause of the result was that the level of nitrate nitrogen of water is basically high. Therefore, this study indicated that washing effect is no differences between environmental-friendly detergent and chemical detergent by washing for milking machine and cooling machine. Above all, producing high quality milk is to manage the water quality as well as using detergent.

A study on crystal growth and properties of high quality DAST (고품질 DAST 결정성장과 특성에 관한 연구)

  • 윤선웅;연석주;김종흠
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • In this study, we have investigated the development of the crystal growth stability and reproducibility for large and high-quality DAST. DAST crystal were grown from a saturated methanol solution by a slow cooling method and DAST was synthesized by the condensation of 4-methyl-n-methyl pyridinum tosylate, which was prepared from 4-pocoline and methyl toluenesulponate and 4-N-dimethyl amino-bezaldehyde in the presence of piperidine. We had synthesized DAST crystals in dry Argon atmosphere in order to avoid the formation of hydride organge co-crystals, DAST$.$$H_2O$. Since DAST molecules crystallize in a humid atmosphere, crystal structure become centrosymmetric, and then second order NLO (nonlinear optical) properties would be disappeared. We fixed the growth orientation of DAST crystal (001) surface. The crystal growth was proceeded at a cooling rate of $H_2O$/day and the cooling period is for 4 days. The dimensions of seed crystal was $2.5\times 3.6\times0.4\textrm{mm}^3$ and we have obtained a DAST crystal with the dimension of $10\times 10.5\times3.0\textrm{mm}^3$. The color of grown DAST crystal is red and it's surface appears to be metallic green.

Numerical Analysis of Combustion Characteristics during Combustion Mode Change of a Low NOx Utility Gas Turbine (발전용 저 NOx 가스터빈의 연소모드 변환시기의 연소특성 전산해석)

  • Jeong, Jai-Mo;Chung, Jae-Hwa;Park, Jung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.127-134
    • /
    • 2004
  • Three-dimensional numerical investigations are carried out to understand the combustion characteristics inside a DLN(dry low NOx) utility gas turbine combustor during the combustion mode change period by applying transient fuel flow rates in fuel supply system as numerical boundary conditions. The numerical solution domain comprises the complex combustor liner including cooling air holes, three types of fuel nozzles, a swirl vane, and a venturi. Detailed three-dimensional flow and temperature fields before and after combustion mode changeover have been analyzed. The results may be useful for further studies on the unfavorable phenomena, such as flashback or thermal damage of combustor parts when the combustion mode changes.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.