• Title/Summary/Keyword: Cooling heating energy consumption

Search Result 281, Processing Time 0.025 seconds

Assessing the Economic and $CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat Pumps (단독주택용 지열 열펌프 시스템의 경제성과 이산화탄소 배출 저감 가능성 평가)

  • Sohn, Byong-Hu;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.64-69
    • /
    • 2009
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work.

  • PDF

Operating Mode of Thermally Activated Building System (TABS) for Residential Buildings According to their Cooling Load Profile (주거건물의 냉방 부하 패턴에 따른 구체축열시스템 운전 방안)

  • Park, Sang-Hoon;Yeo, Myoung-Souk;Yoo, Mi-Hye;Lee, Yu-Ji;Chung, Woong-June;Kim, Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2012
  • Compared to Packaged Terminal Air Conditioning Systems, Radiant Cooling Systems have the advantage of energy saving and thermal comfort. Thermally Activated Building System (TABS) is one of the radiant heating and cooling systems. The main difference between TABS and other radiant systems lies in the usage of the time-lag effect of storing heat energy in the concrete. Current energy usage in summer time is concentrated within a specific time by using Packaged Terminal Air-Conditioner (PTAC). Due to the time-lag effect of TABS, energy usage can be distributed to other time zones. To maximize this effect, it is important to determine the appropriate operating mode, which for TABS is dependent upon the cooling load generated by the occupancy schedule. In this study, occupancy schedules are determined for various residential types. The operating modes of TABS for these residential types are estimated by using a dynamic computational simulation method. The results indicate that the operating modes of TABS can be determined by residential type and occupancy schedule. The load handled ratio by TABS is set up differently according to the cooling load profile obtained from residential type and occupancy schedule. By using TABS, energy consumption could be reduced by 20% compared to PTAC.

Dynamic Simulation of a Dedicated Outdoor Air-conditioning System (외기 전용 공조기의 동특성 시뮬레이션)

  • Kim, Jung-Min;Kim, Young-Il;Chung, Kwang-Seop;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Development of a Energy Demand Estimator for Community Energy Systems (건물 단지에 대한 에너지 수요 예측 데이터베이스 응용 프로그램 개발)

  • Chung, Mo;Park, Hwa-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.37-44
    • /
    • 2009
  • The field-surveyed and measured energy consumption data is processed to develop building energy demand models for heating, hot water, cooling, and electricity. The load models are systematically organized as a database and hourly loads for a span of year (8760 hours) are generated by the program. Rased on those models a Microsoft Access application program is developed to calculate energy demands for a Community Energy System (CES) composed of 17 types of buildings. User-friendly interfaces are provided to assist non-expert end users and necessary tools to link the calculation results to subsequent coagulations such as operation simulation or economic assessment.

A Feasibility Case Study on Net-Zero Energy Daycare Center (어린이집의 넷 에너지 제로화 구현에 관한 사례분석)

  • Kim, Ji-Hyeon;Lim, Hee-won;Shin, U-cheul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.185-192
    • /
    • 2019
  • In this study, we, through case studies, formulated a method to implement net-zero energy daycare center at the current insulation and technology level, and calculated its energy expense. The reference model was a medium sized daycare center whose number of children was 99. We analyzed the energy consumption status for the reference model and developed TRNSYS simulation analytical model to realize net-zero energy . We assumed the reference model to be "All Electric Building" where all energy including cooking is supplied by electricity. The result is summarized as follows: First, the annual electricity consumption of daycare center was 53,291kWh. Plug load occupied the largest share of 48% followed by lighting, 10%, cooling, 9%, cooking, 9%, heating, 8%, hot water, 5% and ventilation, 2%. Second, the photovoltaic installation capacity to realize net-zero energy was 40.32kWp and its annual generation was 53,402kWh. Third, the annual energy expense(electricity bill) by realizing net-zero energy was 2,620,390won.

Evaluation of thermal comfort and cooling loads for a multistory building

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The latest UK Climate Projections (UKCP09) show that mean daily temperatures will increase everywhere in the United Kingdom. This will significantly affect the thermal and energy performance of the current building stock. This study examines an institutional fully glazed building and looks into the changes in the cooling loads and thermal comfort of the occupants during the occupied hours of the non-heating period. Furthermore, it investigates the effect of relative humidity (RH) on thermal comfort. The Design Summer Year (DSY) 2003 for London Heathrow has been used as a baseline for this study and the DSY 2050s High Emissions scenario was used to examine the performance of the building under future weather conditions. Results show a 21% increase of the cooling loads between the two examined scenarios. Thermal comfort appears to be slightly improved during the months of May and September and marginally worsen during the summer months. Results of the simulation show that a relative humidity control at 40% can improve the thermal comfort for 53% of the occupied hours. A comparison of the thermal comfort performance during the hottest week of the year, shows that when the relative humidity control is applied thermal comfort performance of the 2050s is similar or better compared to the thermal comfort performance under the baseline.

The Evaluation of Cooling Load by The Window Film Insulation in College Building (대학 건물에 적용한 열 차단 필름이 냉방부하에 미치는 영향 평가)

  • Kim, Seok-Hyun;Kang, Su-Hyun;Yu, Si-Wan;Cho, Young-Hum
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.549-552
    • /
    • 2012
  • Recently the world is trying to reduce carbon emissions for global warming. Reducing use of fossil fuels can decrease carbon emission. In this reason the construction field has tried to reduce the use of fossil fuels relating to heating and cooling of buildings. An energy loss through the window system is about 10 to 30 percent of energy consumption of the whole building. The use of window film insulation is increasing to control the heat loss at the windows. The window film insulation absorbs solar radiation and makes the surface temperature of windows high. In this study, window surface temperature is measured, and an impact on indoor air is identified after attaching window film insulation. Finally, we found that cooling load decreases through simulation.

  • PDF

A Case Study of Hybrid Air Conditioning and Ventilation System (환기 병용형 냉난방 시스템 설계 및 현장 적용 사례 연구)

  • Lee, Hong-Cheol;Hwang, In-Ju;Shin, Hyun-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.89-94
    • /
    • 2008
  • In this study it was evaluated that hybrid air conditioning and ventilation system to reduce energy consumption and keep on comfortable indoor environment in an underground shopping center. Room temperature by hybrid HAVC system was controled as $1.8{\sim}2.1^{\circ}C$ low and indoor humidity was controled as $4.1{\sim}5.0%RH$ low, and response was fast in $2.0{\sim}2.5$ times compared with conventional system. And also transportation efficiency of hybrid HVAC system was improved in about 27%, and total energy consumption rate of hybrid HVAC system is decreased in 16% compared with conventional system.

  • PDF

Analysis on Green BIM based Atrium Sizes in the Early Design Stage (Green BIM기반 초기설계 단계에서 타입별 아트리움의 규모산정에 관한 연구)

  • Jeong, Seung-Woo;Lee, Kweon-Hyoung;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-70
    • /
    • 2013
  • This study for establishing specific standards of atrium design aims to discuss design of atrium to consider energy performance atrium in office buildings. In order to evaluate a type and a scale of atrium at the early design stage, modeling details of mass design were set as standards of conceptual design. In the experiment, Project Vasari was used to analyze modeling and energy consumption, based on the LOD 100-step suggested by AIA, because there is no guideline to specify a level of modeling details at each design process. From this analysis, the correlation among a simple-typed atrium and scale and energy load was considered. The result of this research is as follows: First, the single-sided atrium reduced energy the most, and it was followed by three-sided, two-sided, four-sided and continuous-typed ones. On the whole, they could decrease energy by up to about 15%. Also, the atrium with a wide facade facing in the south was more favorable to reduce energy. Second, planning the atrium within 10~30% of the whole building area was more energy efficient. Third, rather than the depth, adjusting the length in designing an atrium could reduce cooling and heating loads by 1.5% per 1m. As explained above, energy performance evaluation considering types and planning elements of atrium helps to assess alternatives in a reasonable way. In particular, considering the use of building needs to be preceded to select a type of atrium, although it is also important to consider its planning elements.

Analysis on Green BIM based Atrium Sizes in the Early Design Stage

  • Jeong, Seung-Woo;Lee, Kweon-Hyoyng;Choo, Seung-Yeon
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.260-266
    • /
    • 2013
  • This study for establishing specific standards of atrium design aims to discuss design of atrium to consider energy performance according to the types of atrium of office building. In order to evaluate a type and a scale of atrium at the early design stage, modeling details of mass design were set as standards of conceptual design. In the experiment, Project Vasari was used to analyze modeling and energy consumption, based on the LOD 100-step suggested by AIA, because there is no guideline to specify a level of modeling details at each design process. From this analysis, the correlation among a simple-typed atrium and scale and energy load was understood, and the followings are the considerations for designing an atrium. First, the single-sided atrium reduced energy the most, and it was followed by three-sided, two-sided, four-sided and continuous-typed ones. On the whole, they could decrease energy by up to about 15%. Also, the atrium with a wide facade facing in the south was more favorable to reduce energy. Second, planning an atria within 10~30% of the whole building area was more energy efficient. Third, rather than the depth, adjusting the length in designing an atrium could reduce cooling and heating loads by 1.5% per 1m. As explained above, energy performance evaluation considering types and planning elements of atrium helps to assess alternatives in a reasonable way. In particular, considering the use of building needs to be preceded to select a type of atrium, although it is also important to consider its planning elements.

  • PDF