• Title/Summary/Keyword: Cooling characteristics

Search Result 2,295, Processing Time 0.027 seconds

Analysis of Surface Temperature Change and Heat Dissipation Performance of Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 도로 포장체의 표면 온도 변화와 방열 성능 분석)

  • Byonghu Sohn;Muhammad Usman;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.8-19
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have well studied and documented by many researchers. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their heating and cooling performance. The aim of this study is to investigate the thermal performance of the HHP, such as heat dissipation performance in winter season while focusing on the surface temperature of the concrete and asphalt pavement. For preliminary study a small-scale experimental system was designed and installed to evaluate the heat transfer characteristics of the HHP in the test field. The system consists of concrete and asphalt slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In two slabs, circulating water piping was embedded at a depth of 0.12 m at intervals of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. The results indicated that concrete's heating performance is better than that of asphalt, showing higher surface temperatures for the whole experiment cases. However, the surface temperature of both concrete and asphalt pavement slabs remained above 0℃ for all experimental conditions. The heat dissipation performance of concrete and asphalt pavements was analyzed, and the heat dissipation of concrete pavement was greater than that of asphalt. In addition, the higher the set temperature of the circulating water, the higher the heat dissipation. On the other hand, the concrete pavement clearly showed a decrease in heat dissipation as the circulating water set temperature decreased, but the decrease was relatively small for the asphalt pavement. Based on this experiment, it is considered that a circulating water temperature of 20℃ or less is sufficient to prevent road ice. However, this needs to be verified by further experiments or computational fluid dynamic (CFD) analysis.

SNU 1.5MV Van de Graaff Accelerator (IV) -Fabrication and Aberration Analysis of Magnetic Quadrupole Lens- (SNU 1.5MV 반데그라프 가속기 (IV) -자기 4극 렌즈의 제작과 수차의 분석-)

  • Bak, H.I.;Choi, B.H.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • A magnetic quadrupole doublet was fabricated for use at the pre-target position of SNU 1.5MV Van de Graaff accelerator and then its optical characteristics were measured and analysed. The physical dimensions are: pole length 180mm, aperture radius 25mm, pole tip radius 28.75mm. Material for poles and return yokes is carbon steel KS-SM40C. Coils have 480 turns per one pole and air-cooling is adopted. Applying the d.c. current 2.99$\pm$0.03A to the lens, and using the Hall probe, magnetic field elements $B_{\theta}$ , $B_{\gamma}$, were measured at the selected Points along each coordinate direction r,$\theta$, z. From the area integration and orthogonal polynomial fitting for the measured data, the magnetic Field gradient G=566.3$\pm$2.1 gauss/cm at lens center, the effective length L=208.3$\pm$1.44mm along the lens axis have been obtained. The harmonic contents were determined up to 20-pole from the generalized least squares fitting. The results indicate that sextupole/quadrupole is below 1.4$\pm$0.9% and all the other multipoles are below 0.5% in the region within 18mm radius at the center of lens.

  • PDF

Effects of soy defatting on texturization of texturized vegetable proteins (대두 탈지 처리가 식물조직단백 조직화 특성에 미치는 영향)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Boram Park;Shin Young Park
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • In this study, the quality characteristics of texturized vegetable proteins (TVP) produced from defatted soy flour (DSF) were analytically compared with those of texturized vegetable proteins produced with isolated soy protein (ISP) and non-defatted soy flour (SF). The base raw material formulation consisted of 50% soy proteins, 30% gluten, and 20% corn starch. A cooling die-equipped extruder was used with a barrel temperature set at 190℃ and screw rotation speed of 250 rpm. With respect to the hardness of isolate soy proteins, that of soy flour and defatted soy flour was 22.4% and 68.8%, respectively, and gumminess was 17.6% and 44.3%, respectively. Defatting increased chewiness, shear strength, and springiness. Moisture content was higher in soy flour than in defatted soy flour, while there were no significant differences in terms of water absorption and turbidity. The pH was higher with soy flour than with defatted soy flour. Concerning color, the L and b values were higher with soy flour, while the a value was higher with defatted soy flour. These results suggest that defatting soybeans can improve the quality of plant-based proteins. Further research is needed to address the quality differences from those of isolated soy proteins.

Quality properties of texturized vegetable protein made from defatted soybean flour with different soybean seed coat contents (대두껍질 함량에 따른 탈지대두분말 식물조직단백의 품질 특성)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Seul Lee;Boram Park;Shin Young Park;Yong Suk Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.896-904
    • /
    • 2023
  • The texturization characteristics of textured vegetable protein (TVP) were investigated based on the extent of soybean decoating during the pretreatment of defatted soybean flour used for TVP. The raw materials for TVP consisted of 50% defatted soybean flour, 30% gluten, and 20% corn starch. The weight ratios of soybean seed coat to soybean flour were 9%, 6%, 3%, and zero. Extrusion was performed using an extruder equipped with a cooling die, maintaining a barrel temperature of 190℃ and screw speed of 250 rpm, Water was injected at a rate of 9 rpm using a metering pump. Regarding the textures of the extruded TVPs produced from defatted soybean flour, an increase in the soybean seed coat content led to a decrease in the apparent fibrous structural layer and an increase in hardness. However, there were no significant changes in elasticity and cohesion. Moreover, as the soybean seed coat content increased, the pH of TVPs decreased. A higher soybean seed coat content also tended to lower the moisture content, increasing water absorption, solids elution, and turbidity. These results suggest that an increased seed coat content reduces the proportion of protein, and the fibers present in the seed coats prevent texturization.

Effect of Roadside Tree Planting Characteristics on Improving Urban Thermal Environment - Based on Observations of Temperature and Humidity of Roadside Trees in Daegu Metropolitan City - (가로수 식재 특성에 따른 도시 열환경 개선 효과 - 대구광역시 가로수 온습도 관측을 바탕으로 -)

  • Son, Jeong-Min;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.4
    • /
    • pp.32-44
    • /
    • 2024
  • This study aimed to analyze changes in temperature and humidity based on the presence of roadside trees (tree, tree + shrub) and their arrangement (single row, double row), and calculate the discomfort index to evaluate the thermal environment. For this, three temperature and humidity observation campaigns were conducted from June to September 2023 in Dalseo-gu and Jung-gu, Daegu. Results from the observation in Dalseo-gu showed that temperature and humidity were inversely related. During the day, areas with roadside trees consistently exhibited lower temperatures than those without trees. This pattern was evident in all observation campaigns. In particular, the temperature difference between the areas increased during peak heat hours (15:00-16:00). Specifically, the average temperatures were lowest in areas with tree + shrub planting, followed by tree-only areas, and highest in areas without trees, showing statistically significant differences. The highest temperatures were observed at night and early morning in areas with trees or tree + shrub planting. Conversely, when calculating the discomfort index, areas with trees and shrubs showed the most favorable thermal comfort. In Jung-gu, nearly all observations indicated that areas with double-row tree-planting had significantly lower temperatures than areas with single-row tree-planting. The discomfort index was also found to be more positive in second-row tree planting areas compared to first-row tree planting areas. By quantitatively analyzing the cooling effect of urban roadside trees and the improvement in thermal comfort, this study provides empirical evidence that can be used to support urban forest projects and related policy implementations.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Quality Characteristics and Retarding Retrogradation of Sponge Cakes containing Red Yeast Rice(Monascus nuruk) Flour (홍국(Monascus nuruk) 분말을 첨가한 스폰지 케이크의 품질 특성 및 노화 억제 분석)

  • Song, Ka-Young;Kim, Jong-Hee;O, Hyeon Bin;Zhang, Yangyang;Kim, Young-Soon
    • Culinary science and hospitality research
    • /
    • v.22 no.3
    • /
    • pp.11-21
    • /
    • 2016
  • This study investigated the quality characteristics and retarding retrogradation of sponge cakes made with red yeast rice (RYR) flour. RYR (Monascus nuruk) is known to help digestion, smooth blood flow, and have anti-cancer, anti-microbial, and inhibitory effects against biosynthesis of cholesterol and blood pressure. This studys aim' was to find the optimal proportion of RYR flour in sponge cake. RYR sponge cakes were prepared with various levels (0, 5, 10, 15 and 20%) replacement of wheat flour and were designated as the control (without RYR), RYR5, RYR10, RYR15 and RYR20 respectively. Specific gravity was the lowest in RYR15 at 0.57, and the baking loss rate was not significantly different among the samples (p<0.05). The dough yield was the highest in RYR15 at 96.61. The moisture contents was highest in order, control, RYR5, and RYR15 at 28.67%, 28.18%, and 26.82% respectively. The L-value of crust tended to increase according to the level of RYR, but the L-value of crumb decreased in accorddance with the the content of RYR. The a-value of crust also decreased according to the level of RYR, although the a-value of crumb increased in response to higher levels of RYR. The b-value tended to decrease with increases of RYR (p<0.05). RYR5 exhibited the highest pH at 8.63, compared with RYR15 (8.57). The hardness, which was measured after cooling for 1 hour, was the lowest in RYR15 at $163.33g/cm^2$ and the springiness was not different significantly (p<0.05). Cohesiveness was the highest in RYR10 at 133.06%. The chewiness was the highest in RYR10 at $391.63g{\cdot}cm$ and lowest in RYR15 ast $169.62g{\cdot}cm$. Avrami equation showed that RYR15 and RYR20 had the lowest Avrami exponent (n) at 0.0664 and 0.4983 respectively. Time constant (1/k) was the highest in RYR15 at 200.00. Sensory evaluation revealed that RYR15 was the highest in color (5.50), flavor (4.95), sweetness (4.90), chewiness (4.75), and overall acceptability (4.60).

Estimating the freezing and supercooling points of Korean agricultural products from experimental and quality characteristics (국내산 농산물의 과냉각 및 동결점 분석)

  • Park, Jong Woo;Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.438-444
    • /
    • 2016
  • This study was performed to determine the optimal freezing point for the reliable cold storage of Korean agricultural products, and to provide basic data for determining the storage temperature based on the quality characteristics. Additional supercooling temperature analysis was conducted to explore the possibility of supercooling storage. To determine the effects of quality characteristics on the freezing point, the hardness, acidity, moisture and sugar content were analyzed. The crops were frozen using customized cooling unit and their freezing and supercooling points were determined based on their heat release points. The freezing temperatures of garlic, leek, cucumber, hot pepper, grape, oriental melon, netted melon, peach, cherry tomato, plum, daikon, sweet persimmon, apple, sweet potato, mandarin, pear, and strawberry were -1.6, -0.5, -0.5, -0.7, -1.6, -1.6, -1.3, -0.8, -0.3, -1.1, -0.3, -1.7, -1.5, -1.5, -0.8, -1.5, and -$0.9^{\circ}C$, respectively; otherwise, supercooling points were -7.8, -3.7, -3.3, -4.9, -5.7, -4.6, -2.8, -3.3, -5.9, -4.2, -0.8, -4.7, -3.2, -3.7, -4.7, -4.2, and -$3.4^{\circ}C$, respectively. These results suggest that the ideal freezing temperature of crops could be estimated through freezing point depression because of their sugar content, and this technique should be used to maintain an optimum storage temperature. However, cold storage is complicated and further study is required because of the effects of long-term cold storage on the crops.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.