• 제목/요약/키워드: Cooling and Heating

검색결과 1,915건 처리시간 0.031초

삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기 (Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases)

  • 권오근
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

연속파형 Nd:YAG 레이저를 이용한 SCM4강의 표면경화에 관한 연구 (A Study on the Surface Hardening of SCM4 Steel Using a Continuous Wave Nd:YAG Laser)

  • 나기대;신병헌;신호준;유영태
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.24-32
    • /
    • 2007
  • Laser surface hardening is beneficially used for surface treatment of structural steel. Due to very rapid heating and cooling rates, structural low-alloy steel(SCM4) can be hardened as self quenching. The aim of this research project is to improve the influence of the process laser parameters: laser power, spot size, surface roughness, and traverse speed. The laser beam is allowed to scan on the surface of the workpiece at the constant power(1095W), varying the traverse speed at 0.3m/min, 0.5m/min and 0.8m/min. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with uniform hardness. From the results of the experiment, it has been shown that the stable hardness is about 600$\sim$700Hv, when the laser power, focal position and the traverse speed are P=1095W, z=0mm and v=0.3m/min.

액정을 이용한 대류 열전달 측정 방법의 비교 연구 (A Comparative Study on the Convective Heat Transfer Measurement Technique based on Liquid Crystal)

  • 정기호;송기범;고기탁;김귀순
    • 한국추진공학회지
    • /
    • 제6권3호
    • /
    • pp.37-43
    • /
    • 2002
  • 지금까지 많은 열전달 계수의 측정에 관한 연구가 수행되고 있다. 본 논문에서는 액정을 이용하여 국소 열전달 계수를 측정하는 방법을 다루고 있다. 과도방법과 정상방법을 사용하여 실린더 표면의 지역적인 열전달 계수를 측정하였다. 정상상태일 때는 금박막 필름으로 실린더를 코팅하여 실험하였고, 과도방법일 때는 삽입기법과 바이패스 기법으로 각각 실험하였으며, 두 경우 모두 열풍동을 이용하여 실린더를 가열시키는 방법과 냉각시키는 방법으로 각각 실험하였다. 이와 같은 실험으로 과도방법과 정상방법을 이용하여 실린더표면에서의 대류열전달계수의 측정실험을 수행하고, 각 방법들에 대한 비교분석을 통해 액정을 이용한 열전달 측정방법의 특징들을 살펴보았다.

발코니 확장형 공동주택의 이중외피 창호 열성능에 따른 지역별 건축물에너지 효율등급 평가 (Study on the Evaluation of Regional Building Energy Efficiency Rating According to the Insulation Performance of Double Skin Window in Apartment Houses Expanded Balcony)

  • 장철용;안병립;김치훈;홍원화
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.32-37
    • /
    • 2010
  • In order to handle the crisis about energy-environment problem, it is necessary to develop the future-oriented and innovative energy technology in architecture area. So the development of new technology for energy saving and alternative energy use has been spurred in this area. Double skin window system, which is an active covering to respond to the exterior change of the environment, is the skill that can reduce the indoor cooling and heating load and the environmental architecture can be realized. This study works out U-value of windows using the window-simulation program with the development and study of the double skin. In addition, the effect of the double skin insulation on the efficiency rating has been analyzed, applying to the certification system of the building energy efficiency rating which has implemented.

복합 공간 구성 건물의 공조구역 운영 전략에 따른 에너지부하 특성 연구 (Study on the Operation Strategy of A Building with Multi-Complex Spaces)

  • 육인수;김민환;남현진;김동호;설동문;이건태;김진호;김재민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.108-113
    • /
    • 2009
  • Buildings with multi-complex spaces designed for architectural values and functional requirements give rise to technical challenges in terms of energy efficiency and thermal comfort. Since spaces in such buildings are connected with openings with geometrical complexity, it is hard to define zoning plan and to control heating/cooling loads effectively. This paper presents a case study on the evaluation of operation strategy for a building with multi-complex spaces using computer simulation. The modelling methodology and the results of the simulations are also described.

  • PDF

청정에너지농업시스템 개발에 따른 실증단지의 온실가스배출량 분석 (Analysis of Greenhouse Gas Emission associated with Clean Energy Agriculture System Development)

  • 김태훈;윤성이
    • 한국유기농업학회지
    • /
    • 제23권4호
    • /
    • pp.643-658
    • /
    • 2015
  • This study presents detailed emission of greenhouse gases of using Clean Energy Agriculture System according to a cradle-to-gate life-cycle assessment, including emission from energy use and leak of Biogas. Calculations were done with the PASS software and the covered gases are $CH_4$, $N_2O$ and $CO_2$, Total GHG fluxes of amount to $1719.03kgCO_2/day$, $39.63kgCO_2/day$ (2.31%) are from facility house process, $0.19kgCO_2/day$ (0.01%) are from transport process, $696.72kgCO_2/day$ (40.53%) are from Anaerobic digestion process, $846.61kgCO_2/day$ (49.25%) are from Heating and cooling system, $135.88kgCO_2/day$ (7.90%) are from Fertigation production process. The results suggest that for effective reduction of GHG emissions from Facility house using clean energy. Reduction targets should address both the production process as defined by IPCC sectors and the consumption process. An LCA assessment as presented here could be a basis for such efforts.

Preliminary Study on the Elemental Quantification of in Ambient Liquid Samples of Microliter Volume Using the In-air Micro-PIXE Technique

  • Ma, Chang-Jin;Lim, Cheol-Soo;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.54-60
    • /
    • 2017
  • Quantifying the trace elements in infinitesimal ambient liquid samples (e.g., single raindrop, cloud/fog water, and the soluble fraction extracted from the particles collected for a short time) is an important task for understanding formation processes, heating/cooling rates, and their health hazards. The purpose of this study is to employ an in-air micro PIXE system for quantitative analysis of the trace elements in a thimbleful of reference liquid sample. The bag type liquid sample holder originally designed with $10{\mu}m$ thick $Mylar^{(R)}$ film retained the original shape without any film perforation and apparent peaks of film blank by the end of the analysis. As one of tasks to be solved, the homogeneity of the elemental distribution in liquid reference species was verified by the X-ray line profiles for several references. It was possible to resolve the significant peaks for whole target elements corresponding to the channel number of micro-PIXE spectrum. The calibration curves for the six target elements (Si, S, Cl, Fe, Ni, and Zn) in standard solutions were successfully plotted by concentration (ppm) and ROI of interest net counts/dose (nC).

LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법 (Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM)

  • 정동운;이상용
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

레이저를 이용한 유리절단의 유한요소해석 (Finite Element Analysis for Breaking of Glass Using Laser)

  • 조해용;김관우;남기정;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제9권1호
    • /
    • pp.9-16
    • /
    • 2006
  • Glass is one of brittle materials. Generally, brittle material is weak for tensile stress but strong for compression stress. Laser breaking of glass used this brittle characteristics. Laser breaking of glass was simulated to optimize breaking condition by using commercial FEM code MARC which is applicable to thermo-mechanical coupling analysis. Various shapes of heat sources were applied to the analysis and the distance between heating and cooling source were varied for each simulation. The shapes of heat sources were circle, single and double ellipse and the distance was varied from 0mm to 30mm. Moving heat sources were designed on the basis of experimental condition. As a result, double elliptic shape of heat source was the most suitable among them in laser breaking of glass. And it should be useful to determine optimal condition of laser breaking for glass.

  • PDF

그라우트 재료별 열응답 특성 및 열교환기 운전온도 변화 (Thermal Response Property of Grout Materials from In-situ Test and Temperature Variation of Ground Heat Exchanger)

  • 김갑득;이성주;윤여상
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.769-775
    • /
    • 2008
  • The objective of this report is to determine the difference of thermal response that grouted two different materials, and compare the simulation result of the length of total ground heat exchanger length that using the ground thermal conductivity. And also to know heat exchange variation of ground heat exchanger temperature that measured with various test depth. The result shows that the test hole grouted with water permeable material got better thermal response than grouted with water impermeable material. However, with consideration of ingnore for the initial 12 hour data, the test hole grouted with impermeable material has larger thermal conductivity than the other. By former thermal conductivity, simulated data by engineering program shows only 3.4% difference or less. This result shows that ground thermal conductivity is not the main variables for the design program of ground heat exchanger. At the cooling or heating mode, base on the depth of -150m, the ground heat exchanger has best temperature at $-90{\sim}-60m$ and than getting worse because of entering water heat exchanged with leaving water in the same hole.

  • PDF